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Abstract 

This article analyses statistical model mechanism in the motion of micropolar nanofluid over an 

electromagnetic actuator with variable thickness. The formulated model captures melting heat transfer 

phenomenon coupled with thermal radiation, viscous dissipation, thermal-movement and Brownian 

motion of nanoparticles. The model equations are restructured into ordinary derivatives from the initial 

partial derivatives by means of relevant similarity quantities. The equations are subsequently tackled 

numerically via shooting technique alongside Runge-Kutta Fehlberg scheme. The results are displayed 

graphically to showcase the contributions of the physical terms emerging from the model on the 

dimensionless quantities. In the analysis, it is found that an enhancement in the magnitude of the melting 

heat parameter reduces the surface heat propagation but viscous dissipation term acts contrary. Besides, 

augmenting the magnitude of micropolar and modified Hartmann number parameters boosts the fluid 

motion. More so, various statistical models are applied to test the data set for the coefficient of skin 

friction and the Nusselt number for variations in the micropolar fluid parameter (𝐾). The statistical 

analysis points out that the data set for skin friction coefficient fits the Frechet model for 𝐾 = 0 and the 

Weibull model for 𝐾 = 1,2,3 whereas that of the Nusselt number fits the Frechet distribution for  𝐾 =
0, 1 and Lognormal distribution for 𝐾 = 2 & 3. 

 

Keywords: Electromagnetic actuator, Microplar nanofluid; Melting heat transfer; Statistical model,  

Thermophoresis 

1.0 Introduction 

Eringen (1966, 1972) conceputualized the 

concept of micropolar fluid and thermo-

micropolar fluid respecticvely. Micropolar fluid 

is a branch of non-Newtonian fluid which posses 

microstructures with a unique characteristics of 

randomly oriented or rigid spherical particles. 

This fluid model accurately captures the flow 

mechanism of animal blood, liquid crystals, 

polymeric suspensions, colloidal fluids and 

exotic lubricants (Lukaszewicz, 1999; Hayat et 

al., 2008; Chen et al., 2011, Fatunmbi and 

Adeniyan, 2018). Due to wide-ranging 

engineering and industrial applications derivable 

from micropolar fluid, various researchers have 

paid attention to investigate its flow mechanism 
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as well as its dynamics of heat transfer under 

diverse conditions and configurations. Its 

applications can be encountered in paint rheology 

and chemical engineering, bio-mechanics 

engineering (e.g. motion of blood in the body, 

fluid movement in the brain, etc.), the cooling of 

metallic sheet in water  bath, etc. (Rahman, 2009; 

Reena and Rana, 2009).  

In different areas of manufacturing and 

engineering processes (e. g. transportation 

processes, pharmaceutical and drug delivery, 

cancer treatment, etc.), the concept of heating 

and cooling are often encountered. Hence, it 

becomes essential to investigate the thermal 

properties of various devices for better 

performance.  The suspension of nanometer-

sized particles in the convectional fluid (such as: 

water, kerosene, oil, ethlene glycol, etc.) to form 

a colloidal solution of nanoparticles in the base 

fluid is termed nanofluid. Usually, these 

nanoparticles are typically made of metals, 

oxides, carbides, or carbon nanotubes, This new 

class of fluids have the capacity to enhance the 

thermal conduction as well as the thermo-

physical fluid properties (viscosity, thermal 

conductivity, thermal diffusivity, heat transfer). 

Choi (1995) initiated such a concept and due to 

wide applications of such phenomenon, various 

researchers have reported on their flow 

mechanism. Noor et al. (2015) carried out an 

analysis on the mixed convection of a micropolar 

nanofluid towards a stagnation point over an 

elongated surface. Their investigation showed 

that the blend of convectional fluid and the 

nanoparticles produced an enhanced heat transfer 

mechanism. Gangadhar et al. (2017) employed a 

numerical approach to evaluate the motion of 

magneto-micropolar nanofluid on a two 

dimensional stretching/shrinking material with 

surface mass flux featuring Newtonian heating 

condition. Subhani and Nadeem (2018) inspected 

the thermal characteristics and motion of 

micropolar hybrid nanoliquid in a porous 

material surface. The study showed that heat 

transfer in a hybrid naoliquid is higher than that 

of nanofluid in the presence of microrotation 

effects. Atif et al. (2019) examined 

bioconvective motion of micropolar fluid with 

the mixture of nanoparticles consisting motile 

microorganism and wall stratification. The 

authors pointed out that a rise in the micropolar 

material parameter caused a decline in the 

thermal field as well concentration profile. 

Recently, Fatunmbi and Salawu (2021) discussed 

a numerical analysis of chemically reacting 

micropolar nanofluid motion featuring viscous 

dissipation and multiple slips effects at the wall. 

The authors reported a shrinking concentration 

boundary layer but an enlarged momentum 

boundary structure in the presence of Brownian  

motion  parameter. Of recent, Fatunmbi et al. 

(2021) evaluated heat transfer characteristics in 

the motion of tangent hyperbolic nanofluid over 

a permeable expanding plate in the 

neighbourhood of a stagnation point in the 

presence of nonlinear mixed convection term. 

The researchers reported a drop in the heat 

transfer rate due to impovement in the magnitude 

of thermophoresis and the Brownian motion 

terms. 

In engineering science such as in geophysics and 

astrophysics, the use of magnetic fields for the 

control of electro-conducting fluids as liquid 

metals, plasmas, etc. is important. However, 

when the electrical conductivity of the fluid is 

low, there is a need to introduce external electric 

field because the external magnetic field currents 

alone cannot induce efficient flow mechanism in 

such scenarios. A device known as 

electromagnetic actuator (Riga plate) can be used 

to induce the required flow current. In this 

device, there is arrangement of fixed alternating 

electrodes and magnets placed on the surface 

such that the Lorentz force is generated parallel 

to the plane. This idea was originated by Gailitis 

and Lielausis (1961) and has been extended by 

many scholars (Abbas et al., 2016; Fatunmbi and 

Adeosun, 2020; Fatunmbi et al., 2021). In all of 

these studies however, the application of 

statistical models to test the data set for the 

engineering quantities of interest (skin friction 

coefficient and the Nusselt number) and to fit the 

best distribution for variations in the fluid 

material property has not been considered. This 

becomes necessary to accurately predict the 

pattern of flow and heat transfer behaviour of 
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fluid material property for applications in various 

industrial activities. 

Hence, the intent of the current study is to 

establish statistical model for the flow and 

melting heat transfer in micropolar nanoliquid 

over an electromagnetic actuator with variable 

thickness. The developed model features the 

effects of viscous dissipation, thermal radiation 

and temperature-reliant thermal conductivity. 

This study therefore intends to provide answers 

to the following research questions. How does 

the modified Hartmann number affect the flow 

and thermal fields of the micropolar nanoliquid? 

Is there a significant impact of the variable 

thickness and melting heat transfer on the flow 

and thermal field of micropolar nanoliquid? 

Which statistical distribution model provides the 

best fit for the skin friction coefficient for 

variation in the micropolar fluid material?  

Which statistical distribution model provides the 

best fit for Nusselt number (heat transfer) for 

variation in the micropolar fluid material?  

To provide answers to aforementioned questions, 

the controlling equations have been numerically 

integrated via the approach of shooting technique 

and associated with Runge-Kutta Fehlberg 

algorithm. Afterwards, various graphs have been 

plotted and tables generated to discuss the effects 

of the pertinent parameters affecting the flow 

dynamics and heat transfer mechanism. 

2   Problem Development 

 An incompressible, steady motion and melting 

heat transfer of micropolar nanofluid over an 

electromagnetic actuator with variable thickness 

is considered. In the development of this 

problem, there is an assumption viscous 

dissipation, thermophorseis and Brownian 

motion effects are present whereas the thermal 

conductivity relies on the temperature.  The 

direction of motion is in 𝑥 axis while 𝑦 direction 

is fixed perpendicular to it with respective 

components of velocity indicated as 𝑢 and 𝑣 as 

displayed in figures 1a & 1b. The sheet is 

stretching with the velocity 𝑢 = 𝑢𝑤(𝑥) =
𝑎(𝑥 + 𝑤)𝑛. 

 

 

 

 

 

The sheet is not flat as described in Fig. 1b. with 

a given profile which is specified as 𝑦 =
𝑏(𝑥 + 𝑤)(1−𝑛)/2, where 𝑏 is taken so small for 

the sheet to be suitably thin. This problem is 

valid for 𝑟 ≠ 1 since 𝑟 = 1 depicts a flat sheet 

case. In the boundary conditions, the stretching 

surface temperature and concentration are higher 

than that of  the free stream. i.e . 𝑇𝑤 > 𝑇∞ and 

𝐶𝑤 > 𝐶∞. 

 

2.1   The Governing Equations 

In line with the above-mentioned assumptions, 

the equations governing the problem are 

communicated as follows (see Fatunmbi and 

Adeosun, 2020; Iqbal et al., 2017): 

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0, (1)  

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= (μ + 𝜅)

𝜕2𝑢

𝜕𝑦2 +
κ

𝜌

𝜕𝑁

𝜕𝑦
+

𝜋𝑗0𝑀𝑜

8𝜌
exp (−

𝜋

ℎ
𝑦) , (2)  

Figure 1a: Electromagnetic actuator 
Figure 1b: Flow configuration and coordinate system 
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 𝑢
𝜕𝑁

𝜕𝑥
+ 𝑣

𝜕𝑁

𝜕𝑦
=

𝛾

𝜌𝑗

𝜕2𝑁

𝜕𝑦2 −
𝜅

𝜌𝑗
(2N +

𝜕𝑢

𝜕𝑦
), (3)  

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

1

𝜌𝑐𝑝

𝜕

𝜕𝑦
(𝑘

𝜕𝑇

𝜕𝑦
) + Υ [

𝐷𝑇

𝑇∞
(

𝜕𝑇

𝜕𝑦
)

2

+ 𝐷𝑏 (
𝜕𝑇

𝜕𝑦

𝜕𝐶

𝜕𝑦
)] +

(μ+κ)

𝜌𝑐𝑝
(

𝜕𝑢

𝜕𝑦
)

2

+
16𝜎⋆𝑇∞

3

3𝑘⋆𝜌𝑐𝑝

𝜕2𝑇

𝜕𝑦2 ,
 (4) 

 𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷𝑏

𝜕2𝐶  

𝜕𝑦2

+
𝐷𝑇

𝑇∞
(

𝜕2𝑇

𝜕𝑦2).  (5) 

Subject to the following boundary conditions:  

𝑢 = 𝑢𝑤(𝑥) = 𝑎(𝑥 + 𝑤)𝑛 , 𝑣 = 0, 𝑇 = 𝑇𝑚, 𝐷𝑏
𝜕𝐶

𝜕𝑦
+

𝐷𝑇

𝑇𝑚

𝜕𝑇

𝜕𝑦
= 0, 𝑁 = −𝑚

𝜕𝑢

𝜕𝑦
 ,

𝑘 (
𝜕𝑇

𝜕𝑦
) = 𝜌[𝜆1

 + 𝐶𝑠(𝑇𝑚 − 𝑇0)]𝑣(𝑥, 0)  𝑎𝑡  𝑦 = 𝑏(𝑥 + 𝑤)(1−𝑛)/2,

𝑢 → 0, 𝑇 → 𝑇∞, 𝐶 → 𝐶∞  𝑦 → ∞.

 (6) 

The variation of the thermal conductivity with temperature is expressed as (see Hayat et .al, 2018) 

 𝑘 = 𝑘∞ (1 + 𝐿
𝑇−𝑇𝑚

𝑇∞−𝑇𝑚
).                                                                                                                (7)             

 The quantities in Eq. (8) are introduced into the main equations to transform them from partial to ordinary 

differential equations (see Hayat et .al, 2018). 

𝐾 = (
κ

𝜇
) , 𝐸𝑐 = (

𝑢𝑤
2

𝑐𝑝(𝑇∞−𝑇𝑚)
), 𝐿𝑒 = (

 𝛼

𝐷𝑏 
), 𝜖 = [

𝜋

ℎ
(

2𝜈(𝑥+𝑤)1−𝑛

(𝑟+1)𝑎
)

1

2
], 𝑁𝑡 =

𝐷𝑇Υ(𝑇∞−𝑇𝑚)

𝜈𝑇∞
, 𝛼  = (

𝑘

(𝜇𝑐𝑝)
), 𝜉 = 𝑦 [

(𝑛+1)

2𝜈
𝑎(𝑥 +

𝑤)𝑛−1]

1

2
, 𝑢 = a(𝑥 + 𝑤)𝑛𝐹′(𝜉), 𝑁 = 𝐺(𝜉) [

𝑎3(𝑛+1)(𝑥+𝑤)(3𝑛−1)

2𝜈
]

1

2
, 𝑃𝑟 = (

𝜈

𝛼 ), 𝑁𝑏 =
𝐷𝑏ΥC∞

𝜈
, 𝑣 = − [

𝑎𝜈(𝑟+1)

2
(𝑥 +

𝑤)(𝑟−1)]

1

2
(𝐹(𝜉) +

(𝑛−1)

(𝑟+1)
𝜂𝐹′(𝜉)) , Z = (

𝑐𝑝(𝑇∞−𝑇𝑚)

[𝜆1
 +𝐶𝑠(𝑇𝑚−𝑇0)]

),γ = (𝜇 +
 𝜅

2
) 𝑗,    𝑗 = (

𝜈

𝑛
) 𝑥(1−𝑛). , Φ(𝜂) =

𝐶

𝐶∞
,  

v = − [
𝑎𝜈(𝑛+1)

2
(𝑥 + 𝑤)(𝑟−1)]

1

2
(𝐹(𝜉) +

(𝑛−1)

(𝑛+1)
𝜂𝐹′(𝜉))  ,                                                   

ϵ = [
𝜋

ℎ
(

2𝜈(𝑥+𝑤)1−𝑟

(𝑟+1)𝑎
)

1/2

], M = (
𝜋𝑗0𝑀0

8𝜌𝑞2(𝑥+𝑤)2𝑟−1) , 𝑁𝑟 =
16𝜎⋆𝑇∞

k∞𝑘∗   , ϵ = (1 + Lθ).                       (8)                           

  The governing equations therefore translate to the underlisted equations in view of Eqs. (7) and (8). 

 (1 + 𝐾)𝐹′′′ − (
2𝑟

𝑟+1
) 𝐹′2 + 𝐹𝐹′ + 𝐾𝑔′ + (

2

𝑟+1
) 𝑀𝑒−𝜂𝜖 = 0, (9)  

 (1 + 𝐾/2)𝐺′′ + 𝐹𝐺′ − (
3𝑟−1

𝑟+1
) 𝐹′𝑔 − 𝐾(2𝑔 + 𝐹′′) (

2

𝑟+1
) = 0, (10)  

 (1 + 𝑁𝑟 + 𝜖Θ)Θ′′ + 𝜖Θ′2
+ Pr (𝐹Θ′ + 𝐸𝑐(1 + 𝐾)𝐹′′2

+ 𝑁𝑡Θ′2
+ 𝑁𝑏Θ′Φ′) = 0, (11)  

 Φ′′ +
𝑁𝑇

𝑁𝑏
Θ′′ + 𝑃𝑟𝐿𝑒𝐹Φ′ = 0. (12) 

 Subject to:  

𝐹′(𝛽) = 1, Θ(𝛽) = 0, Φ(β) = 0, 𝐺 = −𝑚𝐹′′(𝛽)  𝑎𝑡  𝛽 = 𝑏 (
(𝑟+1)𝑛

2𝜈
)

1/2

𝑍Θ′(β) + 𝑃𝑟𝐹(𝛽) = 𝛽 (
1−𝑛

1+𝑛
) 𝐹′(𝛽)  𝑎𝑡  𝛽 = 𝑏 (

(𝑟+1)𝑛

2𝜈
)

1/2

𝐹′(∞) → 0, Θ(∞) → 1, Φ(∞) → 1  𝑎𝑠  𝑎 → ∞.

 (13) 
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In Eqs. (9-13), the differentiation is done with respect to 𝜉, 𝛽 = (𝑏 (
(n+1)𝑎

2𝜈
)

1/2

) is the wall  thickness term and 𝜉 =

𝛽 = 𝑎 (
(𝑛+1)𝜅

2𝜈 
)

1/2

 denotes flat surface. In order to convert the domain into [0, ∞], it is assumed that 𝐹(𝜉) = 𝑓(𝜉 −

𝛽) = 𝑓(𝜂),  𝐺(𝜉) = 𝑔(ξ − 𝛽) = 𝑔(𝜂), Θ(𝜉) = 𝜃(𝜉 − 𝛽) = 𝜃(𝜂) and Φ(𝜉) = 𝜙(𝜉 − 𝛽) = 𝜙(𝜂), with these relations, the 

outlinig equations simplify to: 

 (1 + 𝐾)𝑓′′′ − (
2𝑛

𝑛+1
) f ′2 + 𝑓𝑓′′ + 𝐾𝑔′ + (

2

𝑛+1
) 𝑀𝑒−(𝑎+𝜂)ℎ = 0, (14)  

 (1 + 𝐾/2)𝑔′′ + 𝑓𝑔′ − (
3𝑛−1

𝑛+1
) 𝑓′𝑔 − 𝐾(2𝑔 + 𝑓′′) (

2

𝑛+1
) = 0, (15)  

(1 + 𝑁𝑟 + 𝐿𝜃)𝜃′′ + 𝐿𝜃′2
+ 𝑃𝑟𝑓𝜃′ + 𝑃𝑟𝐸𝑐(1 + 𝐾)𝑓′′2

+ 𝑃𝑟𝑁𝑡𝜃′2
+ 𝑃𝑟𝑁𝑏𝜃′𝜙′ = 0

 (16) 

 𝜙′′ +
𝑁𝑡

𝑁𝑏
𝜃′′ + 𝑃𝑟𝐿𝑒𝑓𝜙′ = 0. (17) 

Subject to: 
𝑎𝑡 𝜂 = 0 𝑓′ = 1, 𝜃 = 0, 𝑔 = −𝑚𝑓′′, 𝜙 = 0, 𝑓 = 1/Pr [𝑎 (

1−𝑛

1+𝑛
) − 𝑍𝜃′]

𝑎𝑠 𝜂 → ∞ 𝑓′ → 0, 𝑔 → 0, 𝜃 → 1, 𝜙 → 1.
 (18) 

 

Table 1: Nomenclature 

Symbol Description Symbol Description 

𝑢, 𝑣  velocity in 𝑥, 𝑦 direction  𝑇𝑚  melting temperature  

𝜌 fluid density viscosity  ℎ  width of magnets and electrodes  

𝜇  dynamic viscosity  𝜈  fluid kinematic viscosity  

𝜅  vortex viscosity  𝜆1
   latent fluid heat  

𝑇  Fluid temperature  𝑘 
∗  mean absorption coefficient  

(𝜌𝑐𝑝) heat capacity  𝐶𝑠  heat capacity of concentration surface  

𝑎⋆  Stefan-Boltzmann constant  𝑇0  solid surface temperature  

𝑇∞ temperature at free stream  𝑚  boundary parameter  

𝑘  Fluid thermal conductivity  𝐷𝑏  molecular diffusivity  

𝑗  micro inertia density  𝐷𝑇  Thermophoresis coefficient  

L thermal conductivity parameter  𝑁  component of micro rotation 

𝑢𝑤 
𝑀 

𝐸𝑐 

𝐾 

𝑃𝑟 
𝜖 

 stretching velocity  
Modified Hartmann number 
Eckert number 
Micropolar parameter 
Prandtl number 
Dimensionless parameter 

𝛾 
𝑍 

𝐿𝑒 

𝑁𝑡 

𝑁𝑏 
𝑛 

 
 

 spin gradient viscosity  
Melting heat parameter 
Lewis number 
Thermophoresis term 
Brownian motion parameter 
Power law index 

 

 

3. Numerical Method. 

A numerical solution of the set of the boundary 

value problem Eqs. (14-18) has been sought due 

to strong nonlinearity of the problem. An 

unconditionally stable numerical solution via 

Runge-Kutta-Fehlberg scheme alongside with the 

shooting technique is employed. The detailed 

procedure of this method can be obtained in Xu 

and Lee (2013); Mahanthesh et al. (2018); 

Fatunmbi and Okoya (2020). 

3.1 Statistical Model selection 

In this study, Akaike Information Criterion (AIC) 

and Bayesian Information Criterion (BIC) are 

employed to select the best statistical model 

(Shafiq et al., 2021). The data for the skin 

friction coefficient 𝐶𝑓𝑥 and the Nusselt number 
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𝑁𝑢𝑥 are tested using AIC and BIC. The model 

that fits best to the data among basic statistical 

models listed in Table 2 is then determined via 

AIC and BIC for each model in the table. The 

distribution with the lowest BIC/AIC value is 

adjudged the best fitted.  

The respective formula for 𝐴𝐼𝐶 and 𝐵𝐼𝐶 are: 

 𝐴𝐼𝐶 = −2 log(𝑠) + 2𝑐 and  𝐵𝐼𝐶 = −2 log(𝑠) +
𝑐𝑙𝑜𝑔(𝑛)  

Where 𝑠 indicates the model likelihood function 

and 𝑐 denotes number of parameters. 

 

3.0 Results and Discussion 

The effects of some selected physical parameters 

on the velocity field and heat distribution are 

graphically presented and discussed in this 

section. Figure 2 describes the impact of melting 

heat transfer 𝑀 on the velocity. It is noticed that 

the fluid velocity enhances with growth in the 

magnitude of the melting parameter 𝑀 within the 

boundary layer region.  

 

   

 

 

 

 

 

 

 

 

 

 

 

 

This 

trend is attributed to the movement of the solid 

surface and the free stream in the same direction. 

Conversely, the thermal field witnesses a 

decrease in the heat distribution with growing 

values of 𝑀 as depicted in Fig. 3 

Fig. 2: Effects of 𝑀 on velocity profile Fig. 3:  Plot of 𝑀 on temperature 

Fig. 4:  Effects of 𝛽 on temperature profile Fig. 5: Effects of 𝛽 on temperature profile 
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Figure 4 portrays the reaction of the velocity 

profile for growth in different values of the wall 

thickness parameter 𝛽. A decreased in the fluid 

motion is observed as the wall thickness 

parameter 𝛽 rises. An increase in 𝛽 depletes the 

momentum boundary layer structure which in 

turn propels a slow motion. It is shown that the 

velocity profile manifests a decreasing pattern 

with an increment in the wall thickness term 

 temperature distribution increases as 𝛽. A rise in 

the magnitude of the micropolar material 

parameter 𝐾 promotes an increase in the velocity 

profile as seen in Fig. 6. This is an indication that 

there is a reduction in the dynamic fluid viscosity 

as 𝐾 increases. Nevertheless, the temperature 

distribution reduces for higher magnitudes of 𝐾 

as observed in Fig. 7.  

Fig. 6. Effects of 𝐾 on temperature profile      Fig. 7. Effects of 𝐾 on temperature profile 

 

Fig. 8. Effects of 𝐻 on temperature profile      Fig. 9. Effects of 𝐻 on temperature profile 
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Fig. 10. Effects of 𝑁𝑡 on temperature profile       Fig. 11. Effects of 𝑁𝑏 on temperature profile  

Figure 8 depicts the graph of the velocity profile 

for variation in the modified Hartmann number 

𝐻. It is noticed that growing values of 𝐻 boosts 

the hydrodynamic boundary layer and accelerates 

the fluid motion. The Lorentz force parallel to 

the wall induces current in the fluid such that 

there is a higerrr velocity due to rising values of 

𝐻. 

Figure 10 elucidates the impact of the 

thermophoresis parameter on the temperature 

profile 𝜃(𝜂).. It is evident that growing values of 

𝑁𝑡 boosts the surface temperature as depicted in 

this figure. The thermal field expands due to 

thermophoresis occurrence owing to Brownian 

motion of the nanoparticles in fluids with a 

constant gradient of temperature. Similarly, the 

heat distribution also increases due to a rise in 

the Brownian motion which characterizes the 

haphazard motion of the nanoparticles as shown 

in Fig. 11. 

The data for the skin friction coefficient and 

Nusselt were further analyzed on the basis of Fig. 

12 and 13, in order to obtain the statistical 

properties for the tested models. Tables 3 and 5 

present the estimated parameters of the different 

distributions that have been tested with the 

considered data. Tables 4 and 6 give the AIC and 

BIC for the 𝐶𝑓𝑥 and 𝑁𝑢𝑥 numbers. The result of 

AIC and BIC show that data set for 𝐶𝑓𝑥 fits the 

Frechet model for 𝐾 = 0 and the Weibull model 

for 𝐾 = 1,2,3. On the other hand, 𝑁𝑢𝑥 data set 

fits the Frechet distribution well for  𝐾 = 0,1 and 

the Lognormal distribution for 𝐾 = 2,3. This is 

an indication that the form of the distribution 

changes after 𝐾 = 0 for 𝐶𝑓𝑥 and 𝐾 = 1 for 𝑁𝑢𝑥 

respectively. Figures 12 and 13 show the 

estimated densities using data of 𝐶𝑓𝑥 and 𝑁𝑢𝑥 

under the models in Table 1 which corroborate 

the results of the AIC and BIC. 
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Fig. 12: The estimated densities for the skin friction coefficient 𝐶𝑓𝑥 

Fig. 13: The estimated densities for the Nusselt number 𝑁𝑢𝑥 
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Table 2: The test distribution for skin friction coefficient 𝐶𝑓𝑥 and Nusselt number 𝑁𝑢𝑥 

Distribution Probability distribution function 𝒇(𝒙) 

Rayleigh 
𝑓(𝑥, 𝜎) =

𝑥

𝜎2
𝑒

− 
𝑥2

2𝜎2   ;  𝑥 > 0, 𝜎 > 0 

Fre’chet 
𝑓(𝑥, 𝛼, 𝑠, 𝑚) =

𝛼

𝑠
(

𝑥−𝑚

𝑠
)

−1−𝛼

𝑒−(
𝑥−𝑚

𝑠
) −𝛼    ;     𝑥 > 𝑚, 𝛼 > 0, 𝑠 > 0  

Gumbel 𝑓(𝑥, 𝜇, 𝛽) = 𝑒− (𝑧+𝑒− 𝑧)   𝑤ℎ𝑒𝑟𝑒   𝑧 =
𝑥 − 𝜇

𝛽
  ;     𝜇 > 0, 𝛽 > 0 

Log-logistic 

𝑓(𝑥, 𝛼, 𝛽) =
(

𝛽

𝛼
) (

𝑥

𝛼
)

𝛽−1

(1 + (
𝑥

𝛼
)

𝛽

)
2       ;   𝑥 > 0, 𝛼 > 0, 𝛽 > 0 

Weibull 
𝑓(𝑥, 𝜆, 𝑘) =

𝑘

𝜆
(

𝑥

𝜆
)

𝑘−1

𝑒− (
𝑥

𝜆
)

𝑘

  ;     𝑥 > 0, 𝜆 > 0, 𝑘 > 0  

Log-normal 
𝑓(𝑥, 𝜎, 𝜇) =

1

𝑥𝜎√2𝜋
𝑒

(−
(ln 𝑥−𝜇) 2

2𝜎2 )
    𝜎 > 0, 𝜇 > 0  

 

Table 3: Parameter estimates for the statistical distribution of 𝐶𝑓𝑥 

Skin friction coefficient 𝐶𝑓𝑥 

Distribution Parameter 𝐾 = 0 𝐾 = 1 𝐾 = 2 𝐾 = 3 

Rayleigh 𝜎 0.2376 0.2345 0.2363 0.2392 

               

Frechet 

 

𝑚 0.3008  -97251.9   -39700.7 -2042024   

𝑠 0.0206 97252.2 39701.0 2042024 

𝛼 1.8112 5586371.1 927900.6 35887025 

Gumbel 𝜇 0.3252 0.3209 0.3073  0.3001  

𝛽 0.0158 0.0190 0.0431 0.0579 

Log-logistic  𝛽 26.3002 26.8173  11.1662   8.1042 

𝛼 0.3320 0.3319 0.3300 0.3289 

 

Weibull 

𝑘 14.105 21.0749 8.6823 6.2428  

𝜆 0.3465 0.3401 0.3510 0.3586 

Log normal 𝜇 -1.0948 -1.1072   -1.1162  -1.1211 

𝜎 0.0654 0.0605 0.1444 0.1987 

  

Table 4: Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) for 𝐶𝑓𝑥 

Skin friction coefficient 𝐶𝑓𝑥 

Distribution  K =0 K =1 𝐾 = 2 𝐾 = 3 

 

Rayleigh 

AIC -245.763 -253.38 -251.87  -248.00 

BIC -242.694 -250.30 -248.77  -244.87 

Frechet 

 

AIC -820.387 -774.23 -521.01 -431.55 

BIC -811.181 -764.98 -511.69 -422.16 

 

Gumbel 

AIC -793.898 -778.29 -523.02  -433.63  

BIC -787.760 -772.12 -516.81 -427.37 

 

Log-logistic  

AIC -753.396 -781.76 -516.31 -422.59 

BIC -747.258 -775.60 -510.10 -416.33 

 

Weibull 

AIC -711.008 -816.70  -549.21 -454.14 

BIC -704.870 -810.54 -543.00 -447.88 

 

Log normal 

AIC -760.185 -798.60 -534.64 -441.59 

BIC -760.185 -792.43 -528.43 -435.33 
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Table 5: Parameter estimates for the statistical distribution of 𝑁𝑢𝑥 

Nusselt number 𝑁𝑢𝑥 

Distribution Parameter K =0 K =1 𝐾 = 2 𝐾 = 3 

Rayleigh 𝜎 0.3456 0.3530 0.3539 0.3531 

               
Frechet 
 

𝑚 0.0448 0.0428 -5.4444 -5.4444 

𝑠 0.0487 0.0435 5.9444 5.9444 

𝛼 0.5999 0.5558 6.3889 6.3889 

Gumbel 𝜇 0.2137 0.2148 0.2083 0.2029 

𝛽 0.2376 0.2440 0.2451 0.2443 

Log-logistic  𝛽 1.4581 1.4088 1.3691 1.3490 

𝛼 0.2146 0.2131 0.2022 0.1941 

 
Weibull 

𝑘 1.0472 1.0182 0.9815 0.9595 

𝜆 0.3709 0.3719 0.3615 0.3530 

Log normal 𝜇 -1.5347 -1.5495 -1.5957 -1.6300 

𝜎 1.09119 1.1306 1.1630 1.1801 

 

Table 6: Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) for 𝐶𝑓𝑥 

Nusselt number 𝑁𝑢𝑥 

Distribution  𝐾 = 0 𝐾 = 1 𝐾 = 2 𝐾 = 3 

 

Rayleigh 

AIC 132.3096 152.3221 172.9782 187.1494 

BIC 135.3785 155.4035 176.0842 190.2793 

Frechet 

 

AIC -25.8300 -19.9633 333.1634 341.5887 

BIC -16.6230 -10.7191 342.4812 350.9784 

 

Gumbel 

AIC 66.0602 75.4469 80.4107 82.6341   

BIC 72.1980 81.6098 86.6226 88.8939 

 

Log-logistic  

AIC 14.7996 21.3907   15.9855 9.6307 

BIC 20.9374 27.5535 22.1974 15.8905 

 

Weibull 

AIC 0.0728 4.9620 0.9057 -4.0227 

BIC 6.2107 11.1248 7.1176 2.2371 

 

Log normal 

AIC -5.0487 1.4740 -4.4967 -11.3515 

BIC 1.0891 7.6367 1.7151 -5.0917 

 

4.0 Concluding Remarks 

The present study evaluates statistical model for 

the flow and melting heat transfer in microplar 

nanoliquid over an electromagnetic actuator with 

variable thickness. The developed model features 

the effects of viscous dissipation, thermal 

radiation, temperature-based thermal 

conductivity. Main equations describing the 

physical problem are remodeled into ordinary 

differential equations using appropriate similarity 

transformation. The resultant equations have 

been tackled numerically via shooting technique 

alongside Runge-Kutta Fehlberg algorithm. 

Various statistical distributions such as Rayleigh, 

Frechet, Gumbel, Log-logistic, Weibull, Log 

normal are applied to test the data set of the skin 

friction coefficient and the Nusselt number for 

variations in the micropolar nanofluid material 

parameter. In addition, Akaike Information 

Criterion (AIC) and Bayesian Information 

Criterion (BIC) were used to select the best 

statistical model. The results show that: 

• The momentum boundary layer expands 

with melting heat transfer, modified 

Hartmann number and fluid material term 

whereas the fluid velocity decelerates 

with a rise in the magnitude of the wall 

thickness parameter. 
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• The thermal field as well as the 

temperature boundary layer improves 

with an increase in the Eckert number, 

thermophoresis and Brownian motion and 

micropolar fluid term. 

• The data set for the skin friction 

coefficient fits the Frechet model in the 

absence of micropolar fluid (𝐾 = 0) and 

the Weibull model for 𝐾 = 1,2,3 whereas 

that of the Nusselt number fits the Frechet 

distribution for  𝐾 = 0, 1 while 

Lognormal distribution fits for 𝐾 = 2 and 

3. 

• The statistical model reveals that the form 

of the distribution for the data sets of skin 

friction coefficient and Nusselt number 

change after some values of material 

micropolar parameter. 
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