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Abstract 

An Electrocardiogram (ECG) is the first diagnostic tool a medical practitioner uses to measure the electrical and mucular 

fitness of an individual heart. The use of ECG is so important because heart-related diseases are silent killers. In recent times, 

advancement and the further development of wearable devices and ECG sensors have made it possible to continuously 

measure and analyze the electrocardiogram and myocardium signals of the heart. However, it requires significant training and 

adeptness to interpret the recorded ECG correctly and effectively. An energy-efficient wireless sensor infrastructure for 

improved operation of cardiovascular problems in the development economy using the concept of fog technology was 

presented. The ECG data was collected from Federal Medical Center Umuahia Abia State, Nigeria. Discrete Wavelet 

Transform (DWT) at first to perform preprocessing of ECG data to eliminate noise from motion artifacts, power line 

interference, and high frequency sources, followed by the undecimated Wavelet Transform (UWT) at first to extract relevant 

features, which are of high interest to a cardiologist. The proposed system classifies a recorded heartbeat into four classes, 

namely Normal Beat, Premature Ventricular Contraction (PVC), Premature Atrial Contraction (PAC), and Myocardial 

Infarction. The study found that processing and analyzing health data at the fog resulted in total energy savings of 36% and 

52% when compared to conventional processing. 
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1.0 Introduction 

A Wireless Sensor Network (WSN) is a 

collection of spatially disseminated sensor 

nodes, which are interconnected by using 

wireless communication (Ahmed et al., 

2020;  Komali  et  al.,  2020). According  to 

(Ye et al., undated), wireless sensor 

networking is evolving equipment that has 

an extensive variety of prospective 

applications including environment 

monitoring, smart spaces, medical systems 

and robotic exploration. Verdu (2021) added 

that,  over  the  last  decade  Wireless  Sensor 
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Networks (WSNs) have been successfully 

applied in many engineering fields such as: 

structural health monitoring, industrial 

applications, environmental monitoring, traffic 

controls, health applications, etc. 

Wireless monitoring devices are an ideal 

option for e-health solutions because of their 

usage convenience. Verdu (2021) maintained 

that, wireless network is any type of 

computer network which is not connected 

by cables. It is a method by which homes, 

telecommunications networks and business 

installations avoid the costly process of 

introducing cables into a building, or as a 

connection between various equipment 

locations. 

Cardiovascular diseases (CVD) are the major 

cause  of  mortality globally.   According  to 

world   health   organization (WHO)   analytics 

nearly 32%    of adult   deaths  all over the 

world   are    due  to  cardiovascular  diseases 

which are caused by disorders of the heart 

and blood    vessels  (Hou and Sha, 2021). 

These include various heart related diseases 

including    coronary   heart   disease   (heart 

attacks),  rheumatic  heart  disease,  raised 

blood pressure (hypertension), cerebrovascular 

disease   (stroke), peripheral artery disease, 

congenital heart disease and heart failure. 

These types of cardiovascular diseases need 

continuous  monitoring  of  certain  body 

parameters  which  need  long  hospital 

stays. In the hospitals patients are monitored 

continuously by hospital staff using various 

instruments  like  bedside  monitors.  These 

instruments are bulky and immobile and 

thus keep patients stick to the bed. Their 

wired connections are very uncomfortable to 

patients  and  medical  staff  also.  Due  to 

mounting  hospital  costs  and  shortage  of 

qualified  healthcare  professionals  it  is 

difficult  to  continuously  monitor  the 

essential body parameters of the patients 

suffering from CVD. 

Wireless sensor network is an energy 

constraint network with the requirement of 

deploying battery to power remotely 

positioned  nodes  for  a  given  network. 

Since the battery capacity of the nodes is 

always limited and usually, it is difficult to 

replace   them  when    deployed,  there   is 

therefore, the need for energy management 

of the nodes in a network (Baek, Son and 

Choi, 2021).   If the designed protocol is 

energy efficient it will enhance the life time 

of a wireless sensor network especially as it 

concerns the enhancement  of Telemedicine 

operation in developing Nations. The burden 

of CVD is increasing     rapidly in African, 

most   importantly   hypertension,    stroke, 

Cardiomyopathies and coronary heart disease. 

Therefore the increasing in incidence cases 

of CVD across Southern Nigerian call for 

concerted   efforts  in   dealing   with  energy 

requirement   issues, so   as   to have  an 

efficient   Energy  wireless   sensor  network 

with  the   objectives     of   balancing the 

increasing in routing load throughput of the 

network, bandwidth expansion, reduction in 

Bit Error Rate (BER) and to increase the 

lifetime of their network (Cui et al., 2021). In 

related work, Islam et al. (2020) proposed a 

smart healthcare system in IoT environment 

that can monitor a patient’s basic health 

signs as well as the room condition where 

the patients are now in real-time. In this 

system, five sensors are used to capture the 

data from hospital environment named heart 

beat sensor, body temperature sensor, room 

temperature sensor, CO sensor, and CO2 

sensor.  The  developed  prototype  is  well 

suited  for  healthcare  monitoring  that  is 

proved by the effectiveness of the system. 

However,  the  system  was  too  bulky  to 

handle and cannot proficiently handle cases 

of diabetes and respiratory problems. 

Tolba et al. (2020) developed a health 

monitoring system that can monitor basic 

symptoms of a patient like heartmrate, 

percentage of oxygen saturation, body 

temperature, and eye movement in IoT 

network. In their work, they developed a 

system that used Heartbeat, SpO2, 

Temperature, and Eye blink sensors as 

capturing elements and Arduino-UNO as a 

processing  device.  The  developed  system 
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was implemented but no specific 

performance measures are described for any 

patient. 

Abrol. (2020) introduced a healthcare 

monitoring kit in IoT environment. The 

developed system monitored some basic 

parameters of human health like Heartbeat, 

ECG, body temperature, and Respiration. 

The major hardware components which are 

used here are pulse sensor, temperature 

sensor, BP sensor, ECG sensor, and 

raspberry pi. The data were collected from 

sensors and sent it to raspberry pi for 

processing and again transmitted it to IoT 

network. The major drawback of the system 

is that no interfaces for data visualization 

are developed. 

In order to diagnose cardiac arrhythmias using 

machine learning and the Internet of Things, 

Devi et al. (2020) suggested looking at the 

statistical and dynamic features of the ECG. The 

ECG signal is received, interpreted, and, in the 

event of an emergency, sent to a doctor by an 

Internet of Things platform for cardiovascular 

illness prediction that makes use of an IoT- 

enabled ECG telemetry system. The signal was 

assessed using the Pan Tompkins QRS detection 

algorithm in order to obtain the dynamic aspects 

of the ECG data. RR intervals from an ECG 

signal were extracted by the system in order to 

capture properties related to heart rate variability. 

There was poor accuracy in the classifier. Fuzzy 

Rules, an intelligent big data analytics model, 

was utilized by Safa et al. (2021) for effective 

cardiac disease prediction using IoT devices in 

the WSN. To assess the prognosis of coronary 

heart disease, the method looks through massive 

data sets. Provide a Fuzzy Rule-Based Intelligent 

Big Data Analytics Model (IBDAM) for 

Effective Cardiac Disease Prediction by IoT 

Devices in WSN. Using a multi-level fuzzy rule 

generation approach estimated with Cardiac 

Disease Infection Transmission Analysis 

(CDITA) weight, the objective was to identify 

the features that were carried over to heart 

disease prediction. Based on the medical 

professional's assessment of risk, the features 

were assigned to a class. 

In order to predict cardiac stress, Safa et al. 

(2021) presented an integrated strategy that 

applies a machine learning algorithm to sensor- 

coupled IoT devices. The proposed work focuses 

on creating an Internet of Things (IoT) system 

that uses information from a sensor connected to 

a computer to determine a person's stress level. 

The Internet of Things can help people manage 

their stress. IoT Edge intelligent devices sensed 

signals from sensors and managed and monitored 

the output using the MQTT protocol. The stress 

analysis prediction model is made using a 

machine learning technique such as Decision 

Tree, K Neighbors Classifier, and Support Vector 

Classifier. A Cardiac Healthcare System based 

on the Internet of Things for Ubiquitous 

Healthcare was introduced by Umar et al. in 

2021. With real-time observations, complete 

patient privacy, and few professional physical 

examinations in cardiac units, the proposed 

Smart Cardiac Care System looks to be a reliable 

and affordable solution for cardiac units. The 

hybrid combining of multiple factors and 

electrocardiographic (ECG) data improved the 

model's uniqueness. The System can also 

produce alerts and warnings for aberrant 

numbers. Access to a patient's record from any 

location is made possible by its presence on a 

cloud server. An ECG telemonitoring strategy 

based on connecting WSNs with the Internet of 

Things was proposed by El Attaoui et al. (2020) 

A wearable sensor node was used to measure the 

ECG signal, making it easier to suppress high- 

frequency noise. After that, the collected data 

was moved to the Gateway node, which carried 

out sophisticated processing. This included 

suppression of baseline and linear variations 

using polynomial interpolation, as well as R-peak 

extraction using the Multi-Layer Perceptron 

Neural Network. The heart rate variation was 

calculated using the extracted R peak. The 

Gateway node could collect the data for the heart 

rate's real-time visual telemonitoring using an 

IoT cloud and an IoT platform with the help of 

IoT technology. 

A WSN-based ECG healthcare application for 

remotely detecting arrhythmias was presented by 

Karthiga and Santhi (2021). The various types of 
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𝑖 

arrhythmias are represented by the information 

contained in the ECG signals. However, the non- 

linearity and complexity of the ECG make 

manual classification difficult. It was suggested 

to use deep learning techniques to optimize ECG 

classification. In order to maximize routing and 

network longevity, this work has made use of 

GWO and ABC. The CNN method for 

automatically identifying the various ECG 

segments is presented in this work. We have 

identified existing knowledge gaps among 

various literatures. Based on this, we have 

carried out research work on an energy 

efficient wireless sensor network for 

telemedicine. 

 
2.0 Materials and Methods 

The materials needed for this research work 

include base station module, power 

amplifiers, antenna interface, power supply 

unit, user equipment (UE) module, set of 

sensor nodes, medical server, an 

electrocardiogram (ECG), Hp laptop and 

Matlab/Simulink software. 

2.1 Methods 

2.1.1 Data acquisition from subjects 

The ECG data was collected from Federal 

Medical Center Umuahia Abia State, 

sampled at 360Hz for performance 

evaluation of the proposed cardiac disorder 

detection platform. Four subjects with age of 

24-35 years were taken to record signals for 

10 minutes each. According to the report 

one subject with normal sinus rhythm (heart 

rate of 70 beats/ minute), one having atrial 

fibrillation, and other two with arrhythmia 

were considered. The bandpass filter (2- 

250Hz) was used to reduce the influence of 

noise such as power line interference, 

baseline wander and motion artifacts which 

are generally embedded with acquired signal. 

Then, the QRS complexes of ECG signals 

were detected. The block diagram of the 

proposed cardiac disorder detection technique 

 

 

 

Figure 1: Block diagram of proposed cardiac 

disorder detection technique 

2.1.2 Signal processing in MATLAB GUI 

to determine PSD 

The obtained signal has noise due to high 

frequency, motion artifact, or power line 

interference. The significant QRS peaks of 

the signal were extracted through a bandpass 

filter at 1-300 Hz and sampled at 200 Hz 

to obtain the signal x(t). The signal, x(t) 

was segmented into three part 𝑥𝑖(𝑡) 
according to the three frequency spectrum, i 

= 1, 2, 3. After the 𝑥𝑖(𝑡) was obtained, 

WT was used to compute its wavelet power 

coefficients, WT(t, a) as follows (Daubechies, 

1990): 

𝑊𝑇(𝑏, 𝑎) = 
1 
∫ 𝑥 (𝑡)𝜑* (

𝑡−𝑏
) 𝑑𝑡 (1) 

√𝑎 𝑎 
 

𝑊𝑇(𝑡, 𝑎) = √𝑎 ∫ 𝑒jw𝑡𝑥𝑖(𝑤)𝑑𝑡 𝜑*(𝑎𝑤)𝑑𝑤   (2) 

where w, 𝑥 (𝑡), 𝜑(𝑡) represents angular 

frequency, the signal in the ith state, and 

Morlet wavelet respectively. The scaling 

factor, a  and shifting factor or space, b 
are real and a > 0. Actually, the WT is not 

a function of time and frequency but time b 
and the scaling factor a. As scale is related 

to frequency, 𝑃𝖶𝑇(𝑡, 𝑎) defines spectral 

density of time and scale (Daubechies, 1990). 

is shown in Figure 1. 𝑃𝖶𝑇 (𝑡, 𝑎) =  
1 

2𝛱𝐶𝑎2 
|𝑊𝑇(𝑡, 𝑎)|2 (3) 

Where the constant C is chosen to obtain 

the energy by using WT, 
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⁄ 

2 
| 𝜑 (w)|  

𝐶 = ∫ 𝑑𝑤 
|w| 

A reference  frequency 𝑤𝑟   is  chosen from 

𝑤 = 𝑤𝑟 
𝑎  to obtain a time-frequency 

density. Finally, wavelet time frequency 
analysis  can  be  expressed  by  equation  (5) 

(Daubechies, 1990). 

discriminates between normal and infected 

heart beats. 

2.1.4 Network Layout 

In this study, 35 clinics wards located at 

Federal medical centre Umuahia, according 

to 2022/2023 data were selected to monitor 

patients of the applications. The patients of 
𝑃 (𝑡, 𝑤) = 

wr 𝑃 (𝑡, 
wr) (5) a clinic are considered to be located at the 

𝖶𝑇 w2  𝖶𝑇 w 
clinic due to the uncertainty in their precise 

𝑃 (𝑡, 𝑎) = 
1

 |𝑊𝑇 (𝑡, 
wr

 2 (6) locations. Potential BSs to serve patients are 
𝖶𝑇 )| 

2𝛱𝐶wr w selected by looking into the distance 

Then, the instantaneous power, P (t, a) WT 

is obtained from Equation (7), which 

contains the messages of time and 

frequency. For assessing the instantaneous 

power of independent frequency components 

of signal, the power spectrum at different 

frequency is divided into three parts: 

(i) The power spectrum for very low 

frequency (VLF, 0.003–0.6 Hz) is: (Abrol, 

2020). 
0.6 

between the clinics and the BSs. 

Note that the locations of clinics and BSs 

(i.e. latitude and longitude) refer to the 

actual locations found in Umuahia, which 

had been obtained from Google Maps 

In this work, LTE-M was considered to 

serve the health application with a coverage 

radius of less than 11km. Hence, patients 

could be served by a BS within 11km from 

their registered clinics. The 26 nearest BSs 

to the clinics were selected to serve patients 
𝑃𝑉𝐿𝐹(𝑡, 𝑎) = ∫0.003 

𝑃𝖶𝑇(𝑡, 𝑓)𝑑𝑓 (7) to reduce the model complexity. 

𝑤ℎ𝑒𝑟𝑒 𝑓 = 𝑤⁄2𝛱   frequency   interval   is 

related to the scaling factor a. 

2.1.3 Statistical features extraction for 

disorder detection 

Two statistical features such as heart rate 

(HR) and form factor (FF) were extracted to 

differentiate among infected and non-infected 

heart beats. 

1) Average heart rate: Instantaneous heart 

rate values are obtained by the inverse of 

the RR interval of each beat. 

Table 1 presents the deduced total number 

of patients registered at each ward who 

have been expected to experience 

postoperative AF. 

2.1.5 Time for processing and analysis 

For the ECG monitoring application, a 30- 

second ECG signal is required to be sent to 

monitor postoperative AF of cardiac surgical 

patients. This signal is retrieved from the 

Arrhythmia database. Note that, the 30- 

second ECG signal offers accurate results for 

the  analysis,  as  recommended.  Such  30- 
𝐼𝐻𝑅 = [ 

60
 

𝑡𝑅𝑅1 
, 

60 
 

𝑡𝑅𝑅2 
, 

60 
 

𝑡𝑅𝑅3 
, … … … … … 

60 
] (8) 

𝑡𝑅𝑅𝑛 
second of un-processed ECG signals has a 

volume of 252.8 kbits. 
𝑤ℎ𝑒𝑟𝑒 𝑡𝑅𝑅1 , 𝑡𝑅𝑅2 , 
𝑡𝑅𝑅3, … … … … … … … . 𝑡𝑅𝑅2 

are time instants at 

which the QRS complexes occur in the 
ECG signal. (Abrol, 2020). 

The ECG signals are processed using Pan 

Tompkins algorithm to extract heart rate and 

QRS duration for further analysis. The 

calculation  of  the  heart  rate  from  the  30- 
𝐴𝐻𝑅 = 

60
 

𝑡𝑅𝑅𝐴𝑣𝑒r𝑎𝑔𝑒 

(9) second ECG signal is based on the number 

of R waves within the 30 seconds and this 
2) Form Factor: It is the ratio of the 
mobility of the first derivative of the signal 

to the mobility of the signal itself. It 

number is multiplied by 2 to obtain the 

heart rate in beats per minute. The QRS 

duration  is  obtained  based  on  the  time 

(4) 
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between Q and S waves found in the ECG signal. 

 

WARD NO OF PATIENTS 

MONITORED USING ECG 

WARD NO OF PATIENTS 

MONITORED USING 
ECG 

1 20 18 28 

2 18 19 6 

3 13 20 68 

4 23 21 20 

5 6 22 15 

6 29 23 16 

7 13 24 30 

8 13 25 32 

9 8 26 8 

10 10 27 24 

11 14 28 4 

12 11 29 16 

13 27 30 16 

14 25 31 10 

15 21 32 9 

16 12 33 6 

17 44 34 19 

 

The PS selected in central cloud to process 

ECG signal is Intel Core i5-4460 with 3.2 

GHz CPU and 500 Gbyte hard drives. An 

experiment was conducted using MATLAB 

with a parallel processing function to 

determine the correlation between time and 

number of patients for processing and 

analysis of raw ECG data. This was carried 

out by performing the processing task on 

the 30-second ECG signals generated by 

10k to 50k patients in 10k steps. At each 

10k step, the processing operation was 

repeated 5 times to calculate the average 

time for the processing duration. Note that, 

the 30-second ECG signals are made up of 

1 ECG record repeated for all patients. 

Also, note that the time to perform the 

processing using MATLAB consists of both 

the time to submit the data for parallel 

processing and the time to run the 

algorithm. 

2.1.6 Equipment ipower iconsumption 

The power consumption of all networking 

equipment and PS consist of an idle part 

and a linear proportional part. The idle 

power of BS, PS, and content server are 

obtained from datasheets and references 

while the idle power for the other 

networking devices was considered to be 

90% of the power consumption at maximum 

utilization. The maximum power consumption 

of the networking equipment and the PS 

and their maximum capacity is given by the 

manufacturers. As for FMC, the maximum 

capacity is considered as the summation of 

the maximum uplink capacity, i.e. 1.25 

Gbps and maximum downlink capacity, i.e. 

2.5 Gbps, to obtain Eb. Note that, the 

networking devices are shared by multiple 

applications while the considered PSs and 

Ethernet switch are dedicated for the 

healthcare application. As discussed for the 

link capacity, in this work we consider 

0.3%  of  the  idle  power  of  the  shared 
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devices is contributed by our healthcare 

applications while 0.42% for LTE-M BS. 

Note that, the LTE-M shares capacity, 

antenna, radio, and hardware with the legacy 

LTE networks (20MHz). Due to this, the 

calculated idle power of the BS (0.42%) 

contributed for healthcare applications is 

based on 7% allocation of LTE-M network 

from the legacy LTE network (i.e. 

1.4MHz/20MHz) and 6% [70] allocation of 

healthcare application from the total M2M 

application supported by LTE-M network. 

Note that, the 6% allocation refers to the 

estimated total number of RBs that is 

dedicated for healthcare applications which 

gives 360 PRBs per second as there are 

numerous types of M2M applications served 

by LTE-M. However, the maximum idle 

power is considered for the unshared 

devices. 

Due to cooling, lighting and other overheads 

in the network, the total power consumed in 

a site is higher than the power consumed 

by the  communications  and  computing 

equipment.  The  ratio of the  total power 

consumed to the power consumed by the 

communications and computing equipment is 

defined as   the power  usage effectiveness 

(PUE). PUE is used to describe the energy 

efficiency of each site (core node site or 

building, cloud site or building or fog site). 

A PUE of 1.5 is considered for IP over 

WDM, metro, and access networks. A PUE 

of 2.5 is considered for small distributed 

clouds in this work. 

Table 2 depicts the input parameters of the 

models for the network architecture. 
Parameter Values 

Maximum power consumption 
of core router 

12300W 

Core router capacity 4480Gbps 

Maximum power consumption 
of content server pcs 

380.8 W 

Idle power consumption of 
content server, ICS 

324.82W 

Content server capacity, CCS 1.8Gbps 

Maximum power of aggregation 
router, PAR 

4550W 

Aggregation router capacity, 
CAR 

560Gbps 

Maximum power consumption 
of LTE based station, PBS 

528W 

Ethernet Switch capacity, CES 0.57W 

 

This section present simulation UE uplink 

transmits power under open loop power 

control. The simulations were performed 

using MATLAB/SIMULINK. To analyze the 

UE energy consumption’s dependency on the 

path loss compensation factor (𝘢) and 

eNodeB sensitivity (Po) are applied. 

Figure 2 highlights the overall CDV 

detection system with the ECG signal 

selector acting as input to the system and 

figure 3 shows the Simulink model of Fog 

monitoring system. 
 

 

 

 

 

Figure 2: Overall CDV detection system using ECG signal processing 
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Figure 3: Simulink Model of Fog Monitoring System 

3.1 Energy consumed by networking 

equipment 

Based on the outcomes of the model, the 

energy consumed by the networking 

equipment has been determined via two 

approaches. Table 3 shows the calculated 

input parameters for the ECG monitoring 

applications. Note that, we consider single 

Processing server (PS) to serve all patients 

(Pat = 669 patients). Also, we consider a 

scenario where we only allow one PS at 

each candidate node (N=1) as the limited 

space at the node can be shared by multiple 

applications. 

Figure 4 shows the energy consumption of 

networking equipment and processing for the 

ECG monitoring applications model. The 

energy saving of networking equipment 

achieved by the ECG model using fog 

server method as compared to what is 

obtainable at FMC Umuahia is 83.1%, as 

illustrated in Figure 4. This is because in 

the proposed model, the location of PS (i.e. 

fog server) is optimized at the access layer 

which is at the FMC as it is the nearest 

shared point to the patients (the FMC is 

connected to all BSs in the network). 

Processing the raw health data at the fog 

server limited the network journey of this 

data i.e. only the feedback data and 

permanent storage data (i.e. processed data) 

is sent to the cloud, resulting in reducing 

the metro and core network energy 

consumption by reducing the data traversing 

the network and reducing the utilization 

time of the network equipment, i.e. reducing 

the idle power consumption. 
 

 

Figure 4: Graph of the energy consumption of 

networking equipment and processing for the 

ECG monitoring applications model 

 

It should be noted that the larger the size of 

the data and the longer the transmission 

duration, the higher the energy consumption. 
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Comparing that to Current energy method 

used in FMC, higher energy is consumed 

by the networking equipment in the metro 

and core layers in the Current energy 

method as the un-processed data is sent to 

the central cloud to be processed. 

From Figure 4, it could be seen that the 

energy consumption for processing in the 

Fog model is slightly higher than the 

current energy method used in FMC by 

0.5%. This is due to the high utilization 

time of the processing server in the Fog 

model compared to the current energy 

method. Note that the same number and the 

same type of processing server are utilized 

in both models. In the Fog model, the 

processing server is on idle mode for 0.76s 

and 0.73s while sending the analyzed data 

for feedback and permanent storage, 

respectively, while it is idle for 0.38 s and 

32 ms in the current energy method model. 

This is due to the link capacity limitation 

in the access layer where the processing 

server is located in the Fog model which 

limits the data rate to send the analyzed 

data to the clinic and cloud storage 

compared to the current energy method. 

However, the total energy saving that 

includes the networking equipment and 

processing achieved by the Fog model 

compared to the current energy method is 

35.7%. 

Also the performance of the Fog compared 

to the current method shows that the Fog 

has a better performance as compared to the 

current method in terms of the networking 

and processing energy consumption.  The 

total energy saving of the Fog model 

compared to that obtainable in FMC is 38% 

when a single PS serves 20% of the total 

number of patients in the network, as 

shown in Figure 5. This saving is attributed 

to the fact that the location of the PSs in 

the fog model is the cloud, thereby reducing 

the amount of networking equipment utilized 

to transmit the raw health data traffic to the 

PS. Therefore, considerable energy is 

consumed in the metro and core layers to 

transmit the raw health data traffic to the 

PSs in FMC. 

Figure 5 also shows that when a single PS 

serves 80% of the patients, the fog model 

saves 0.7% of the processing energy as 

compared to that obtainable in FMC. This 

saving is attributed to the low utilization 

time of the PS with the fog model to 

transmit the raw health data traffic to the 

PSs. Note that reducing the utilization time 

of the PSs reduces the energy consumption 

of the processing. 

 

Figure 5: Graph of energy savings and 

percentage per processing server 

Energy saving increases as the percentage of 

patients served by a single server increases. 

This is because allowing more patients to 

be served by a single PS reduces the 

available time to send the raw video 

recording to the PSs, which in turn reduces 

the energy consumed to keep the networking 

equipment and the PS in idle state. 

The Simulation provides results of the ECG, 

heart rate, and the  𝑆𝑝𝑂2 . In comparison 

with a typical ECG theoretical cycle wave, 

the ECG generated demonstrates the patient's 

normal sinus with a resting heart rate range 

of 78 and 83 BPM. The heart rate at the 

input was set between 78 and 83 beats per 
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minute, and as shown in Figure 5, the heart 

rate is 82 beats per minute. Confirming that 

the fog algorithm used to estimate the HR 

in this simulation is acceptable. 

Figure 6 displays the pre-recorded ECG 

signals that were used to synthesize the 

ECG signals. In comparison with a regular 

ECG theoretical cycle wave, the ECG signal 

clearly  demonstrates  the  patient's  normal 

 

1.5 

1 

0.5 

0 

-0.5 

-1 

-1.5 

sinus with a resting heart rate of 78–83 

BPM. The amplitude of the signals is 

indicated on the y-axis in mV, and the time 

is indicated on the y-axis in seconds. The 

P, R, and T waves have peak amplitudes of 

0.79 – 0.88mV, 1.01 – 1.28mV, and 0.95 – 

1.05mV, sequentially. The T wave has 

larger peak amplitude than the P wave, as 

predicted. 

ECG Signal 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 

Sample index 

Figure 6: Graph of amplitude and sample index generated by ECG signal 

The moving average window generates a signal that contains information about the QRS 

complex's slope and breadth. The last stage in signal processing for R peak detection is shown 

in Figure 7 
 

Figure 7: QRS Peak Detection Output 
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After applying the adaptive thresholds, the 

processed data display a stream of pulses 

indicating the positions of the QRS 

complexes. At the same time, the P, T, and 

U are totally filtered out by the moving 

average window. The amplitude of these 

pulses is between 0.05 and 0.07 millivolts. 

Table 3 shows the ground truth parameters 

used for decision. 

The proposed system classifies a recorded 

heartbeat into four classes, namely Normal 

Beat, Premature Ventricular Contraction 

(PVC), Premature Atrial Contraction (PAC) 

and Myocardial Infarction. 

Table 3: Ground truth parameters used for 

decision. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Graph of throughput and average energy consumption 
 

 

The throughput of the proposed Fog system 

is compared with work done by Zang et al. 

(2021) in Figure 8, and it was observed the 

throughput of the Fog system is improved. 

This improvisation is done using the routing 

protocol based on the Fog algorithm. The 
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number of sensed data packets received by 

the sink node is known as the throughput 

and it should be maximum. The throughput 

of the model depends on the number of 

sensor nodes that are successfully 

participating or active. The number of data 

packets sent by TX node to the sink node 

is directly proportional to the number of 

successfully participating active or alive 

sensor nodes in the network. Especially in 

the case of the Fog model, the sensed 

patient data packets are important and 

crucial and need a secure route for 

transmission. 

 

4 CONCLUSION 

The popularity of Internet of Things is 

increasing on daily basis in the area of 

remote monitoring system of patient. 

Monitoring system is based on monitoring the 

patients’ heart beat automatically through 

connected networks. The system can able to 

detect the critical condition of a patient by 

processing sensors data and instantly provides 

notification to doctors. The doctor can 

monitor the patient at the place where ever 

he is. The patient is monitored and the 

sensed data is send to the server through the 

Wi-Fi. So it is easy for the doctor to monitor 

the patient through the web server. In the 

server the patient body temperature, heartbeat 

can be sensed time to time and get updated 

through Wi-Fi. So the doctor can monitor the 

patient every time he wants. If the heart beat 

is high the notification is sent to the doctor 

using GSM. 

In this research work, an energy-efficient 

wireless sensor network for improved operation 

on cardiovascular problems in development 

economy using the iconcept of Fog technology 

was presented. The Fog technology in ithe 

system is highly significant as continuous 

monitoring of patients' health is done in real- 

time. Fog system also facilitates medical 

practitioners to observe critical health conditions 

of patients remotely from anywhere or any 

location. However, the usage of Fog systems in 

real-time is very limited as maintaining the 

limited residual energy of the sensor nodes is 

very difficult. The outcome of the istudy revealed 

ithat a total energy saving of 36% and 52% are 

attained via processing and analysis the health 

data at the fog in comparison to conventional 

processing. 
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