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Abstract 

The manual attendance system has been in use for decades; however, shortcomings such as impersonation, 

ineffective manual record-keeping, and unreliable token-centric methodologies limit its application for this 

digital age.  Biometric-based fingerprint technique is one of the recently evolving approaches developed 

to mitigate the shortcomings of manual attendance methods. It is on these premises that this current study 

examines the principal methodologies employed in fingerprint recognition, focusing on attendance 

management. Efforts were made to review the recent progress in preprocessing techniques such as 

normalization, segmentation, orientation estimation, ridge frequency analysis, and Gabor filtering. Also, 

feature extraction techniques like minutiae-based, ridge-based, and hybrid techniques were extensively 

analyzed. Furthermore, matching algorithms, performance metrics, and error quantification for evaluating 

the performance of biometric-based fingerprint systems were examined. The strengths, weaknesses, and 

associated bottlenecks with the biometric-based fingerprint technique, particularly the management of low-

quality prints, scalability assurance, and robustness enhancement, were looked into. The outcome of this 

review opens up gaps for new research directions in the development of more reliable and efficient 

fingerprint-based attendance mechanisms. 

 

Keywords:  Attendance management, Fingerprint recognition, Gabor filtering, Minutiae features, Ridge-

based features  

 

1. Introduction 

Traditional methods such as passwords, pen-and-paper records, and identification cards are associated with 

several shortcomings, including theft, misplacement, and proxy attendance (Hoo & Ibrahim, 2019). The 

need to overcome these limitations has driven the development of modern attendance management systems, 

particularly biometric fingerprint-based recognition systems, which remain among the most widely studied 

biometric technologies (Akinduyite et al., 2013). Fingerprint recognition has been adopted across various 

domains, including security, forensics, and identity management, due to its uniqueness, permanence, and 

ease of use. Over the years, advancements in sensing hardware, image processing, pattern recognition, and 
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machine learning have significantly improved fingerprint recognition systems, making them suitable for 

large-scale deployment and real-time applications such as border access control, financial transaction 

monitoring, healthcare systems, and institutional attendance tracking. In fingerprint recognition, the 

extraction of distinctive characteristics from ridge patterns is a critical step in the identification process 

(Jain et al., 2024). 

Conventional fingerprint recognition techniques primarily rely on minutiae-based methods, which analyze 

ridge endings and bifurcations that form unique fingerprint structures. Goyal and Jindal (2017) identified 

minutiae as highly dependable fingerprint features, as they retain their uniqueness despite variations in 

finger pressure, rotation, or partial impressions. However, minutiae-based systems are highly sensitive to 

image quality and require extensive preprocessing to ensure accurate feature extraction. According to Yang 

et al. (2019), factors such as noise, smudging, moisture, and low sensor resolution can obscure genuine 

minutiae or introduce false points, thereby increasing error rates. To address these limitations, researchers 

have explored ridge-based recognition approaches that capture global ridge flow, frequency, curvature, and 

orientation patterns. While ridge-based methods provide improved robustness and stability, they are 

generally less distinctive than minutiae-based approaches, particularly when distinguishing individuals 

with similar global ridge patterns. Jain et al. (2000) introduced orientation maps and global texture 

descriptors that enhance recognition performance under poor image quality and partial fingerprint 

conditions. 

More recent studies have shifted toward hybrid fingerprint recognition techniques that combine minutiae-

based and ridge-based features. Krish et al. (2019) demonstrated that hybrid fusion significantly improves 

recognition accuracy by integrating the precision of minutiae features with the noise tolerance of global 

ridge descriptors. Additional improvements have also been achieved through advanced preprocessing 

techniques such as Gabor filtering. Görgel and Ekşi (2021) reported that Gabor filtering effectively 

enhances ridge–valley structures through frequency- and orientation-selective filtering, thereby improving 

the reliability of subsequent feature extraction, especially for low-quality or uneven fingerprint 

impressions. The increasing interest in biometric attendance systems has further driven research into 

scalable, fast, and robust fingerprint recognition solutions for real-world deployment. Studies by 

Akinduyite et al. (2013), Oyebola et al. (2018), and Oloruntoba and Akinode (2020) have shown that 

fingerprint-based attendance systems reduce administrative errors and impersonation in educational 

institutions. Nevertheless, challenges such as noisy images, large user databases, partial fingerprints, and 

security threats including spoofing remain prevalent in many implementations (Yang et al., 2019; Mizinov 

et al., 2024). These issues continue to motivate research into more robust, efficient, and secure fingerprint 

recognition systems. 

Given the rapid growth and diversity of fingerprint recognition research, a systematic review is necessary 

to highlight recent developments, compare existing approaches, and identify persistent challenges and open 

research directions. This review synthesizes current progress, applications, limitations, and future research 

directions in fingerprint recognition systems. The remainder of this paper is organized as follows: Section 

2 presents the conceptual background of fingerprint recognition, Section 3 reviews related works, Section 

4 summarizes and analyzes the findings of the review, and Section 5 concludes the paper. 

 

2.0 Conceptual Perspective of Fingerprint Recognition 

Fingerprint recognition has evolved from traditional minutiae-based techniques to more advanced hybrid 

and deep learning approaches. Feature extraction plays a central role in this evolution, as it directly 

determines how effectively an individual can be identified. Three major categories of feature extraction 

techniques are prominent in the literature: minutiae-based, ridge-based, and hybrid approaches. Minutiae-

based methods are widely used because of their high discriminative power, ridge-based methods offer 
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improved robustness to noise and poor-quality images, while hybrid techniques integrate multiple feature 

cues to enhance reliability (Goyal & Jindal, 2017). According to Jain et al. (2024) and Yang et al. (2019), 

these approaches differ in their emphasis on local ridge structures, global ridge patterns, texture 

information, or learned representations. Reviewing these techniques highlights the progression of 

fingerprint recognition and illustrates how different methods complement one another in practical, real-

world applications. 

 

2.1 Fingerprint Biometric Authentication: An Overview  

Biometric authentication refers to the automated process of verifying or identifying an individual based on 

distinctive physiological or behavioral characteristics. Because biometric traits are inherently linked to the 

individual, they provide strong resistance to impersonation. Abdulrahman and Alhayani (2023) reported 

that biometric systems offer improved security compared to traditional password-based or token-based 

methods, which may be forgotten, stolen, or intentionally shared. Common biometric modalities include 

fingerprints, facial images, iris patterns, voiceprints, hand geometry, and behavioral traits such as gait or 

typing rhythm. A typical biometric system consists of four main stages: sensing, preprocessing, feature 

extraction, and matching. During the sensing stage, a scanner or sensor captures the biometric sample, 

while preprocessing enhances sample quality by reducing noise and correcting distortions. Feature 

extraction then identifies distinguishing characteristics, such as ridge flows or minutiae points, and the 

matching stage establishes identity by comparing the extracted features with stored templates. 

 

2.1.1  Minutiae-Based Fingerprint Recognition 

Minutiae-based recognition remains the most widely adopted fingerprint recognition approach because it 

relies on distinctive and stable local ridge characteristics, primarily ridge endings and bifurcations. These 

features offer strong individual discrimination, as their spatial locations and orientations remain largely 

consistent even when fingerprint images are captured under varying conditions (Goyal & Jindal, 2017). As 

a result, minutiae-based methods form the foundation of most classical fingerprint recognition systems. 

In typical implementations, minutiae extraction is performed after preprocessing steps such as binarization 

and thinning, which enhance ridge clarity and reduce noise. The most commonly used extraction technique 

is the Crossing Number (CN) method, which identifies minutiae by examining directional transitions in the 

neighborhood of each ridge pixel in a thinned binary image. However, studies have shown that minutiae-

based systems are sensitive to noise, partial fingerprints, and low-quality images, which may introduce 

spurious or missing minutiae and increase false rejection rates (Yang et al., 2019; Akinduyite et al., 2013). 

For each ridge pixel 𝑃 in the thinned binary fingerprint image, the Crossing Number (CN) is computed 

using its eight-connected neighborhood as shown in Eqn (1). Let 𝑃1, 𝑃2, … , 𝑃8 denote the eight neighboring 

pixels surrounding 𝑃, ordered clockwise, and let 𝑃9 = 𝑃1 to complete the circular sequence. The Crossing 

Number is defined as: 

 CN(𝑃) =
1

2
∑ ∣8
𝑖=1 𝑃𝑖 − 𝑃𝑖+1 ∣    where 𝑃9 = 𝑃1          Eqn (1) 

where 𝑃𝑖 ∈ {0,1} represents the binary pixel value at the 𝑖-th neighboring position. The CN value indicates 

the type of ridge structure at pixel 𝑃: 𝐶𝑁 = 1 corresponds to a ridge ending, 𝐶𝑁 = 3 indicates a bifurcation, 

and 𝐶𝑁 = 2 represents a normal ridge continuation. 

Each detected minutia is represented as a triplet (𝑥, 𝑦, 𝜃), where 𝑥and 𝑦 denote the spatial coordinates of 

the minutia in the fingerprint image, and 𝜃 represents the local ridge orientation at that point, estimated 

from the orientation field as depicted with Eqn (2). A complete minutiae template is defined as: 

 𝑇𝑚 = {(𝑥1, 𝑦1, 𝜃1), (𝑥2, 𝑦2, 𝜃2),… , (𝑥𝑛, 𝑦𝑛, 𝜃𝑛)}      Eqn (2) 

where 𝑛 denotes the total number of extracted minutiae points in the fingerprint. As noted by Krish et al. 

(2019), minutiae templates are compact and highly discriminative, but they remain sensitive to noise, 

partial fingerprints, and variations in finger placement.  
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Minutiae matching involves comparing two aligned minutiae templates to determine whether 

corresponding points represent the same fingerprint. Two minutiae are considered a match if they satisfy 

both a spatial proximity constraint and an orientation similarity constraint. 

Let 𝑚𝑖 = (𝑥𝑖, 𝑦𝑖, 𝜃𝑖) and 𝑚𝑗 = (𝑥𝑗 , 𝑦𝑗 , 𝜃𝑗) denote minutiae points from fingerprint templates 𝐴 and 

𝐵, respectively as shown with Eqn (3). The spatial distance between two minutiae points is computed using 

the Euclidean distance as: 

 𝑠𝑑(𝑚𝑖, 𝑚𝑗) = √(𝑥𝑖 − 𝑥𝑗)
2
+ (𝑦𝑖 − 𝑦𝑗)

2
        Eqn (3) 

where (𝑥𝑖, 𝑦𝑖) and (𝑥𝑗 , 𝑦𝑗)represent the pixel coordinates of the two minutiae points. Two minutiae are 

considered spatially consistent if this distance is below a predefined threshold (typically 8–12 pixels). 

Orientation consistency between minutiae is evaluated using the minimum angular difference in Eqn (4): 

 𝑜𝑑(𝑚𝑖 , 𝑚𝑗) = min(∣ 𝜃𝑖 − 𝜃𝑗 ∣, 360
∘−∣ 𝜃𝑖 − 𝜃𝑗 ∣)                Eqn (4) 

where 𝜃𝑖and 𝜃𝑗  are the local ridge orientations of the two minutiae, measured in degrees. This formulation 

accounts for angular wrap-around by constraining the difference to the range [0∘, 180∘]. A match is 

accepted if the orientation difference is below a specified threshold (commonly 10–15 degrees). 

After identifying all valid minutiae correspondences, a normalized matching score is given with Eqn (5): 

 Score𝑚 =
𝑁matched
2

𝑁𝐴⋅𝑁𝐵
                    Eqn (5) 

where 𝑁matched denotes the number of matched minutiae pairs, and 𝑁𝐴 and 𝑁𝐵 represent the total number 

of minutiae points in templates 𝐴and 𝐵, respectively. This normalization ensures that the score reflects the 

degree of similarity between the two fingerprints independent of template size. 

 

2.1.2 Ridge-Based Recognition 

Ridge-based recognition focuses on capturing global fingerprint characteristics, including overall ridge 

flow, ridge frequency, orientation, curvature, and texture. Unlike minutiae-based methods, which depend 

on precise local details, ridge-based features remain relatively stable even when fingerprint images are 

noisy or incomplete because they represent the global structural patterns of the fingerprint. Jain et al. (2000) 

demonstrated that ridge flow patterns provide strong complementarity to local minutiae and showed that 

ridge-based techniques, such as FingerCode, are more robust to noisy or low-quality images. This 

robustness makes ridge-based methods particularly useful in cases where only a limited number of minutiae 

can be reliably detected. However, although ridge-based techniques help reduce false rejection rates, they 

may lack the high level of uniqueness offered by minutiae-based methods, especially in large-scale 

databases. 

Ridge-based techniques typically operate by dividing the fingerprint image into blocks and computing 

orientation or frequency maps that describe ridge flow patterns. Pradeep and Ravi (2022) noted that ridge-

based matching often relies on vector similarity measures, such as Euclidean distance, which generally 

allow faster comparisons than minutiae-based approaches. As a result, ridge-based recognition is well 

suited for large-scale attendance systems where computational speed and robustness are critical. 

Orientation field estimation is commonly performed using gradient-based techniques, as proposed by 

Bazen and Gerez (2002). Let ∂𝑥(𝑢, 𝑣) and ∂𝑦(𝑢, 𝑣)denote the horizontal and vertical intensity gradients at 

pixel location (𝑢, 𝑣) within a local block centered at (𝑥, 𝑦). Two coherence terms are computed as given 

with Eqn (6) and Eqn (7) respectively: 

 Vx(x, y) = ∑ 2(u,v) ⋅ ∂x(u, v) ⋅ ∂y(u, v)       Eqn (6) 

 Vy(x, y) = ∑ [∂x
2(u, v) − ∂y

2(u, v)](u,v)                              Eqn (7) 
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where the summation is performed over all pixels within the local block. These coherence values capture 

the dominant gradient structure of the ridge pattern based on Eqn (8). The local ridge orientation is then 

estimated as: 

 𝜃(𝑥, 𝑦) =
1

2
⋅ atan2(𝑉𝑦, 𝑉𝑥)         Eqn (8) 

 where 𝜃(𝑥, 𝑦) represents the ridge orientation at location (𝑥, 𝑦). This formulation accounts for the 

periodic nature of ridge orientation. 

Once orientation and frequency information are obtained, each block contributes a set of numerical 

descriptors, forming a ridge feature vector which can be evaluated with Eqn (9), thus: 

 Tr = [f1, f2, … , fn]           Eqn (9) 

 Let 𝑇𝑟𝐴 and 𝑇𝑟𝐵 denote ridge feature vectors extracted from two fingerprint images. Matching 

compares two feature vectors 𝑅𝐴and 𝑅𝐵 using Eqn (10) which is performed by computing the Euclidean 

distance between the corresponding feature vectors and converting distance to similarity through Eqn (11);

 TrA = [a1, a2, … , an], TrB = [b1, b2, … , bn]                Eqn (10) 

 D = √∑ (ai − bi)
2n

i=1                   Eqn (11) 

 

2.1.3 Texture-Based Recognition 

Texture-based recognition extends fingerprint analysis beyond ridge orientation and minutiae by 

examining fine-grained texture patterns, including local descriptors, spatial filters, and frequency-domain 

techniques. The Gabor filter-based FingerCode model, first introduced by Jain et al. (2000), extracts texture 

features using a bank of filters tuned to specific orientations and frequencies. Texture-based systems are 

capable of capturing subtle fingerprint details that may not be visible in ridge-orientation fields or minutiae 

maps. Görgel and Ekşi (2021) reported that Gabor-based features are particularly effective for handling 

partial or noisy fingerprints, as they enhance ridge–valley structures while capturing local texture 

variations. In addition to Gabor-based methods, recent studies have explored other texture descriptors, such 

as local binary patterns (LBP) and wavelet-based techniques, which provide compact and invariant 

representations of fingerprint images. By complementing the limitations of minutiae-only approaches, 

texture-based recognition contributes to improved robustness in fingerprint recognition systems. 

 

2.1.4 Deep Learning-Based Recognition 

Recent advances in convolutional neural networks (CNNs) have significantly transformed fingerprint 

recognition by enabling automatic learning of multi-level representations directly from raw fingerprint 

images, rather than relying on manually designed features. Studies by Görgel and Ekşi (2021) and Mulay 

et al. (2024) demonstrated that CNN-based minutiae extractors outperform traditional techniques, 

particularly when processing distorted or low-quality fingerprint images. In addition, Chhabra et al. (2023) 

showed that CNN-based segmentation and enhancement models can substantially improve the clarity of 

latent and low-contrast fingerprints. Deep learning approaches are capable of generating highly 

discriminative embeddings for matching, performing reliable classification, and detecting fine-grained 

fingerprint details with improved precision. However, their adoption in low-resource environments or real-

time attendance systems is often constrained by the high computational demands and large training datasets 

required. Despite these challenges, deep learning has become a central focus of contemporary fingerprint 

research and has inspired the development of hybrid learning-based recognition frameworks. 

 

2.1.5 Hybrid Techniques 

Hybrid recognition techniques combine multiple fingerprint feature types to exploit the strengths of each 

approach. These systems integrate minutiae, ridge-based descriptors, and texture features to produce 

fingerprint templates that are both accurate and stable. Krish et al. (2019) demonstrated that hybrid systems 

achieve lower equal error rates (EERs) than single-technique approaches, particularly when handling 
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partial fingerprints or noisy images. By fusing global and local features, hybrid methods preserve high 

discriminative power while improving robustness under varying acquisition conditions. 

Hybrid fingerprint recognition systems commonly employ score-level fusion strategies to combine 

matching results obtained from multiple feature extractors. This integration compensates for the limitations 

of individual techniques by leveraging complementary information from local, global, and texture-based 

descriptors. A representative hybrid template may take the form as described with Eqn (12); 

 𝐻 = {𝑀, 𝑅, 𝑇}                                               Eqn (12) 

where 𝑀 denotes the set of extracted minutiae features, 𝑅represents the ridge-based feature vector, and 𝑇 

corresponds to the Gabor-based texture feature vector. Each feature component produces an independent 

similarity score, namely 𝑆minutiae, 𝑆ridge, and 𝑆gabor, respectively. 

The overall hybrid similarity score is computed using a weighted sum fusion rule as shown in Eqn (13): 

 𝑆ℎ𝑦𝑏𝑟𝑖𝑑 = 𝑤1𝑆𝑚𝑖𝑛𝑢𝑡𝑖𝑎𝑒 + 𝑤2𝑆𝑟𝑖𝑑𝑔𝑒 + 𝑤3𝑆𝑔𝑎𝑏𝑜𝑟                                     Eqn (13) 

where 𝑤1, 𝑤2, and 𝑤3 are weighting coefficients that control the contribution of each feature type. The 

weights are constrained such that the weighted sum must be equal to one represented in Eqn (14): 

 𝑤1 + 𝑤2 +𝑤3 = 1                   Eqn (14) 

ensuring proper normalization of the combined similarity score. Studies such as Krish et al. (2019), Yadav 

et al. (2024), and Mulay et al. (2024) reported that hybrid fusion strategies reduce both false acceptance 

and false rejection rates, improve robustness to partial or distorted fingerprints, and enhance stability in 

large-scale deployments. 

 

2.2. Fingerprint Image Preprocessing Techniques 

Preprocessing is a critical stage in fingerprint recognition because it provides the foundation for accurate 

feature extraction, matching, and classification. Raw fingerprint images often suffer from low contrast, 

uneven finger pressure, smudging, moisture, noise, and partial impressions. Effective preprocessing 

significantly improves the reliability of both minutiae-based and ridge-based recognition by enhancing 

image quality before feature extraction. According to Yang et al. (2019), inadequate preprocessing is a 

major contributor to high error rates, including increased false rejection rates (FRR) and distorted or 

missing feature points. Over time, several preprocessing techniques have been developed and refined to 

improve ridge–valley clarity, suppress noise, and prepare fingerprint images for reliable analysis. 

Commonly used methods include normalization, orientation estimation, ridge-frequency estimation, Gabor 

filtering, binarization, and thinning. These stages are typically applied sequentially as part of a 

preprocessing pipeline, and many studies combine them to address shortcomings identified in earlier 

fingerprint recognition systems. 

 

2.2.1 Normalization 

Normalization is one of the earliest and most important preprocessing stages in fingerprint recognition, as 

it reduces variations in gray-level intensity caused by uneven finger pressure, sensor limitations, or 

environmental conditions. A widely adopted normalization approach was introduced by Hong et al. (1998), 

which standardizes image intensities by adjusting each pixel relative to a target mean and variance. By 

constraining the pixel intensity distribution, normalization enhances consistency across fingerprint samples 

while preserving subtle ridge information. Chhabra et al. (2023) noted that normalization is particularly 

effective for faint or low-contrast fingerprints, as it improves ridge visibility prior to filtering or 

enhancement. Consequently, most modern fingerprint recognition systems incorporate normalization to 

stabilize subsequent operations such as orientation and ridge-frequency estimation. 

Mathematically, let 𝐼(𝑥, 𝑦)denote the original grayscale intensity at pixel location (𝑥, 𝑦), 𝑀and 𝑉represent 

the mean and variance of the image, and 𝑀0and 𝑉0denote the desired mean and variance. The normalized 

pixel intensity as depicted with Eqn (15): 
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 𝑁(𝑥, 𝑦) =

{
 

 𝑀0 +√
𝑉0(𝐼(𝑥,𝑦)−𝑀)2

𝑉
if 𝐼(𝑥, 𝑦) > 𝑀

𝑀0 −√
𝑉0(𝐼(𝑥,𝑦)−𝑀)2

𝑉
otherwise

                          Eqn (15) 

where the transformation maps pixel values above and below the mean symmetrically, ensuring that the 

resulting image has the specified statistical properties while preserving ridge contrast. 

 

2.2.2 Orientation Estimation 

Orientation estimation determines the direction of ridge flow across a fingerprint image, as described by 

Bazen and Gerez (2002), and plays a central role in enhancement, feature extraction, and classification. 

Most classical approaches compute local image gradients along horizontal and vertical directions and use 

these values to estimate the dominant ridge orientation within predefined image blocks. Jain et al. (2000) 

noted that accurate orientation estimation improves local ridge coherence, enabling filters such as Gabor 

kernels to be properly aligned with ridge directions. Because noise and partial impressions can disrupt ridge 

continuity in low-quality fingerprints, reliable orientation fields are particularly important under such 

conditions. Görgel and Ekşi (2021) emphasized that refined orientation maps significantly enhance 

minutiae extraction, as local ridge direction directly influences the interpretation of ridge endings and 

bifurcations. For a block of size 𝑊 ×𝑊, two coherence terms are computed using Eqn (16) to Eqn (18), 

thus:  

 𝑉𝑥(𝑥, 𝑦) = ∑ 2𝑢,𝑣 𝜕𝑥(𝑢, 𝑣)𝜕𝑦(𝑢, 𝑣)                 Eqn (16) 

 𝑉𝑦(𝑥, 𝑦) = ∑
(𝜕𝑥

2(𝑢, 𝑣) − 𝜕𝑦
2(𝑢, 𝑣))

𝑢,𝑣                            Eqn (17) 

 𝜃(𝑥, 𝑦) =
1

2
atan2 (𝑉𝑦(𝑥, 𝑦), 𝑉𝑥(𝑥, 𝑦))                Eqn (18) 

here ∂𝑥(𝑢, 𝑣) and ∂𝑦(𝑢, 𝑣) denote the intensity gradients along the horizontal and vertical directions at 

pixel (𝑢, 𝑣) within the block, 𝑊is the block size, and 𝜃(𝑥, 𝑦) represents the estimated ridge orientation at 

location (𝑥, 𝑦). 
 

2.2.3 Ridge-Frequency Estimation 

Ridge frequency estimation determines how frequently ridges occur within a fingerprint image and helps 

identify anomalous regions such as smudges, scars, or excessively smooth areas. The process typically 

involves projecting pixel intensities along the ridge direction and detecting peaks corresponding to ridge-

valley transitions. Ridge frequency estimation is important because it guides the tuning of Gabor filters and 

other enhancement kernels. Jain et al. (2000) demonstrated within the FingerCode framework that accurate 

frequency estimation allows filter parameters to be matched to the natural spacing of ridges, resulting in 

improved enhancement quality. Studies by Chhabra et al. (2023) and Yang et al. (2019) further noted that 

inaccurate frequency estimation may cause over-smoothing or distortion of ridge patterns, negatively 

affecting matching accuracy. The ridge-frequency estimation can be obtained with Eqn (19): 

Frequency =
1

Average Ridge Distance
                 Eqn (19) 

where 𝐷 denotes the average ridge-to-ridge distance measured along the ridge direction. 

 

2.2.4  Gabor Filtering 

Gabor filtering remains one of the most influential and widely adopted techniques for fingerprint image 

enhancement. A Gabor filter captures local orientation and frequency characteristics by combining a 

sinusoidal carrier with a Gaussian envelope. Görgel and Ekşi (2021) reported that Gabor filters are 

particularly effective for low-quality or latent fingerprints because they enhance ridge structures while 

suppressing noise. Since Gabor filters are directionally selective, accurate orientation and ridge-frequency 
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estimates are required for effective filtering. When applied correctly, Gabor filtering increases ridge–valley 

contrast, reduces smudging effects, and restores clarity in regions affected by uneven finger pressure. Many 

modern fingerprint recognition systems apply a bank of Gabor filters at multiple orientations to enhance 

ridge structures in all directions. A two-dimensional Gabor filter is expressed as depicted in Eqn (20): 

 𝐺(𝑥, 𝑦; 𝑓, 𝜃) = exp {−
1

2
(
𝑥𝜃
2

𝜎𝑥
2 +

𝑦𝜃
2

𝜎𝑦
2)} cos(2𝜋𝑓𝑥𝜃)               Eqn (20) 

Where; 𝑥𝜃 = 𝑥cos𝜃 + 𝑦sin, 𝑦𝜃 = −𝑥sin𝜃 + 𝑦cos, 𝜎𝑥, 𝜎𝑦 = control the spread of the Gaussian envelope, 

𝑓 = ridge frequency with the coordinate transformation: (𝑥′, 𝑦′)= rotated coordinates.  𝜃 represents the 

local ridge orientation and 𝑓 is the local ridge frequency. Chhabra et al. (2023) showed that Gabor filtering 

significantly improves segmentation and feature extraction accuracy, particularly for partial or latent 

fingerprints. 

2.2.5 Binarization 

Binarization converts the enhanced grayscale fingerprint image into a binary representation, where ridges 

appear as black pixels and valleys as white pixels. This transformation simplifies the image and improves 

both the speed and accuracy of subsequent feature extraction. According to Jain et al. (2024), adaptive 

thresholding techniques apply different threshold values across local regions based on ridge contrast and 

illumination conditions, generally outperforming global thresholding in noisy or unevenly illuminated 

fingerprints. Milewski (2024) emphasized that effective binarization improves ridge path clarity, which is 

essential for the accurate detection of ridge endings and bifurcations. However, inadequate binarization 

may amplify noise or introduce false ridge breaks, increasing the likelihood of spurious minutiae. The 

thresholding operation is shown in Eqn (21): 

 𝐵(𝑥, 𝑦) = {
1 if 𝐸(𝑥, 𝑦) > 𝑇(𝑥, 𝑦)

0 otherwise
                 Eqn (21) 

where 𝐸(𝑥, 𝑦)represents the enhanced pixel intensity and 𝑇(𝑥, 𝑦)denotes the locally adaptive threshold. 

2.2.6 Thinning (Skeletonization) 

Thinning reduces fingerprint ridge lines to a one-pixel-wide skeleton while preserving their overall 

connectivity. This step is essential for minutiae extraction, as it ensures that ridge endings and bifurcations 

are accurately represented at their true locations. Goyal and Jindal (2017) noted that effective thinning 

minimizes the generation of false minutiae caused by spurious branches or excessively thick ridges. Most 

thinning approaches employ iterative algorithms that remove outer ridge pixels while maintaining ridge 

continuity. Milewski (2024) described several cycle-based thinning techniques that are widely used in 

biometric systems due to their computational efficiency and stability. When thinning is performed 

correctly, minutiae detection algorithms such as the Crossing Number (CN) method can produce reliable 

and consistent feature sets. 

 

2.2.7 Modern and Deep Learning–Based Preprocessing 

Recent scholarly studies have proposed and implemented deep learning–based methods for fingerprint 

preprocessing tasks such as segmentation, orientation estimation, and image enhancement. Chhabra et al. 

(2023) developed a convolutional neural network (CNN) model capable of correcting distorted ridge 

patterns and enhancing the clarity of latent fingerprints. Similarly, Mulay et al. (2024) investigated 

learning-based minutiae extraction pipelines that integrate preprocessing into end-to-end neural network 

architectures. Although these approaches typically outperform conventional techniques when processing 

degraded or low-quality fingerprints, they require substantial computational resources and large annotated 

datasets. As a result, their deployment in real-time or resource-constrained environments remains limited. 

Nevertheless, deep learning–based preprocessing methods represent an important direction for future 

research in fingerprint recognition. 
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Preprocessing continues to play a critical role in fingerprint recognition research by improving robustness 

under real-world conditions, reducing error rates, and enhancing overall accuracy. Earlier systems, 

particularly those relying solely on minutiae-based recognition, depended heavily on normalization, 

binarization, and thinning, but often struggled with noisy or partially captured fingerprints (Akinduyite et 

al., 2013; Oyebola et al., 2018). More recent studies have increasingly adopted Gabor filtering, frequency-

guided enhancement, and deep learning techniques to improve orientation estimation and image quality 

(Krish et al., 2019; Görgel & Ekşi, 2021). Despite these advances, challenges such as deep skin damage, 

poor sensor quality, and severe image degradation remain difficult to resolve, even with advanced 

preprocessing techniques (Chhabra et al., 2023; Mulay et al., 2024). Consequently, hybrid feature strategies 

and learning-based approaches continue to be actively explored. 

2.3  Performance Evaluation Metrics in Fingerprint Recognition Systems 

Performance evaluation metrics are essential for assessing the effectiveness, reliability, and practical 

readiness of fingerprint recognition systems. These metrics determine how well a system distinguishes 

between genuine users and impostors and evaluate its suitability for real-world applications such as 

authentication, identification, and attendance management. Common evaluation criteria include statistical 

error rates, matching accuracy, computational efficiency, and overall system robustness. Frequently used 

metrics include false acceptance rate, false rejection rate, true acceptance rate, true rejection rate, and equal 

error rate (Mingote et al., 2019). In addition, measures such as matching time, ranking accuracy, and 

receiver operating characteristic (ROC) curves are often considered. This subsection reviews widely used 

performance metrics to provide a clear reference for researchers in fingerprint recognition. 

 

2.3.1 False Acceptance Rate (FAR) 

The false acceptance rate represents how often a fingerprint recognition system incorrectly accepts an 

impostor as a genuine user. In biometric evaluation, FAR measures the probability that a non-matching 

fingerprint pair is incorrectly classified as a match. A false acceptance occurs when the similarity score 

between two fingerprints exceeds the system’s decision threshold despite originating from different 

individuals. Jain et al. (2024) emphasized that minimizing FAR is particularly important in high-security 

applications, although stricter thresholds may increase false rejection rates. Krish et al. (2019) reported that 

hybrid feature fusion methods generally achieve lower FAR due to improved discriminative capability. A 

high FAR indicates vulnerability to security breaches. FAR is expressed using Eqn (22): 

 𝐹𝐴𝑅 =
Number of False Acceptances

Total Number of Impostor Attempts
               Eqn (22) 

 

2.3.2  False Rejection Rate (FRR) 

The false rejection rate measures how often a system incorrectly rejects a genuine user and reflects its 

sensitivity to intra-class variations such as partial fingerprints, dry or moist skin, pressure differences, and 

environmental noise. A false rejection occurs when the similarity score between two genuine fingerprint 

samples falls below the decision threshold. Yang et al. (2019) observed that systems relying solely on 

minutiae-based features often exhibit higher FRR when processing low-quality images due to missing or 

spurious minutiae. Ridge-based and Gabor-based features can help reduce FRR by providing greater 

tolerance to image distortion. Akinduyite et al. (2013) emphasized that FRR, alongside FAR, remains a 

fundamental metric for evaluating fingerprint recognition performance. Batubara et al. (2021) focused 

primarily on FRR to assess system sensitivity to legitimate users. FRR is usually expressed with Eqn (23): 

 𝐹𝑅𝑅 =
Number of False Rejections

Total Number of Genuine Attempts
                Eqn (23)  
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2.3.4 Equal Error Rate (EER) 

Equal error rate is a standard benchmark used to evaluate and compare biometric systems. EER represents 

the operating point at which the false acceptance rate and false rejection rate are equal. A lower EER 

indicates better overall system performance, as it reflects fewer errors of both types. This metric is widely 

used because it provides a single, concise measure of system accuracy. Comparative studies, including 

Krish et al. (2019) and Görgel and Ekşi (2021), frequently report EER, particularly for hybrid fingerprint 

systems that must balance sensitivity and specificity. Graphically, EER is obtained at the intersection of 

the FAR and FRR curves as the decision threshold varies as described with Eqn (24) by Ogundepo et al. 

(2019): 

 𝐸𝐸𝑅 = 𝐹𝐴𝑅(𝜏) = 𝐹𝑅𝑅(𝜏)                 Eqn (24) 

Where; 𝜏is the threshold value. 

 

2.3.5 Accuracy 

Accuracy is one of the most commonly reported evaluation metrics in fingerprint recognition research 

because it indicates how often the system makes correct decisions overall. It measures the proportion of 

true outcomes, including correctly accepted genuine users and correctly rejected impostors, relative to all 

verification attempts. In biometric evaluation, accuracy is computed as the sum of true positives and true 

negatives divided by the total number of outcomes, including false matches and false non-matches. 

Although accuracy provides a general view of system performance, it does not always capture behavior 

under imbalanced data or strict security requirements. For this reason, accuracy is often interpreted 

alongside metrics such as FAR or EER. Görgel and Ekşi (2021) defined accuracy as the proportion of 

correct decisions made by the system and is computed using Eqn (25): 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                  Eqn (25) 

Where TP is true positives, TN is true negatives, FP is false positives, and FN is false negatives. Rahman 

et al. (2023) similarly reported both accuracy and EER as key performance metrics in modern fingerprint 

recognition studies. 

 

2.4.  Other Metrics of Evaluation 

Several additional evaluation metrics appear in the fingerprint recognition literature but are less frequently 

reported in experimental studies. Nevertheless, they remain valuable for assessing the performance of 

biometric fingerprint systems. These metrics include genuine acceptance rate (GAR), false match rate 

(FMR), false non-match rate (FNMR), receiver operating characteristic (ROC) curves, matching time, 

throughput, and template size. Genuine acceptance rate represents the proportion of legitimate users who 

are correctly verified by the system. False match rate and false non-match rate are alternative terminologies 

commonly adopted in ISO biometric standards and correspond closely to FAR and FRR, respectively. 

These measures are widely used in industry-grade fingerprint recognition systems. 

Receiver operating characteristic (ROC) curves provide a graphical representation of the relationship 

between GAR and FAR across varying decision thresholds and are commonly used to visualize the trade-

off between security and usability. Matching time measures the speed of the fingerprint matching process 

and is particularly important for large-scale one-to-many (1:N) systems, such as attendance management 

platforms, immigration control, or national identity databases. Throughput refers to the number of 

fingerprint verification operations a system can process per second and is critical for real-time applications. 

Template size indicates the amount of memory required to store fingerprint features, with smaller templates 

generally improving storage efficiency and computational performance. Although these additional metrics 

do not appear explicitly in all the reviewed studies, they are widely discussed in biometric system 

evaluations and help position the reviewed work within the broader fingerprint recognition research 

landscape. 
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3.0  Related Works  

Fingerprint-based recognition systems have been extensively studied across application domains including 

biometric authentication, access control, financial security, and attendance management. A survey of 

literature published between 2012 and 2024 reveals notable advancements in preprocessing techniques, 

feature extraction strategies, and system architectures. However, challenges related to scalability, 

robustness, and security remain persistent. For example, Aranuwa and Ogunniye (2012) developed a 

fingerprint-based authentication system for secure electronic payment applications in Nigeria. While the 

system demonstrated improved security in user verification, limited details were provided regarding feature 

extraction algorithms or performance metrics such as FAR and FRR. Although the study established the 

relevance of fingerprint biometrics for secure identity management, it did not explore hybrid recognition 

approaches or advanced preprocessing techniques. 

Akinduyite et al. (2013) proposed a fingerprint-based attendance management system that employed the 

Crossing Number (CN) method for minutiae extraction, alongside normalization, binarization, and thinning 

as preprocessing stages. Performance evaluation reported a false acceptance rate below 2% for small 

datasets; however, false rejection rates of up to 5% were observed for low-quality fingerprint images. 

Matching time increased with database size, highlighting early concerns regarding system scalability. 

While the study demonstrated the feasibility of minutiae-based recognition for attendance systems, it also 

revealed limitations that subsequent research sought to address through improved robustness and 

efficiency. 

Subsequent studies focused on more scalable and digitally integrated architectures. Oyebola et al. (2018) 

developed a web-based fingerprint attendance system using standard minutiae extraction and template 

matching techniques. The system achieved an accuracy of 95% under controlled conditions, but matching 

times increased to approximately 4–5 seconds for a database of 500 users, indicating scalability constraints. 

The authors also reported increased false rejection rates when fingerprints were dry, smudged, or partially 

captured. 

Ogundepo et al. (2019) implemented a real-time fingerprint authentication system for managing student 

records, incorporating normalization and thinning during preprocessing and employing minutiae-based 

identification. The system reported an equal error rate of approximately 3%; however, higher false rejection 

rates were observed when processing noisy fingerprint images. This study highlighted the difficulty of 

maintaining reliability under real-world imaging conditions without advanced enhancement techniques. 

In order to address the limitations of single-feature approaches, hybrid recognition techniques were 

introduced. Krish et al. (2019) presented a hybrid fingerprint recognition system that combined minutiae 

and extended ridge features using a weighted fusion strategy. The system achieved an EER of about 2.5%, 

outperforming minutiae-only and ridge-only methods. However, this improvement came at the cost of 

increased computational complexity, with matching times exceeding 5 seconds for large datasets. The 

authors strengthened preprocessing through Gabor filtering, which improved robustness against noise and 

partial fingerprints. 

Yang et al. (2019) provided a comprehensive review of fingerprint recognition challenges and emphasized 

the importance of hybrid feature integration for improved system reliability. Their analysis showed that 

minutiae-only systems typically exhibited EER values between 3 and 5%, while hybrid approaches 

achieved better accuracy at the expense of higher computational demands. Oloruntoba and Akinode (2020) 

proposed a web-based fingerprint attendance system that relied on minutiae features and relational database 

storage. Although the system achieved an accuracy of 94% for small university cohorts and reduced 
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impersonation, it remained vulnerable to poor-quality fingerprint images and suffered from scalability 

limitations. 

Görgel and Ekşi (2021) combined Gabor filtering with CNN-based minutiae recognition and achieved an 

accuracy of 97%. Despite its high accuracy, the system required substantial processing time due to the 

computational cost of convolutional layers, limiting its suitability for large-scale or real-time deployments. 

Rahman et al. (2023) developed a cloud-backed fingerprint attendance platform integrated with a mobile 

application. The system employed conventional preprocessing and minutiae matching techniques and 

achieved an accuracy of 93%. However, performance degraded when fingerprint quality was poor, 

resulting in an EER of approximately 4%. While cloud storage improved scalability, the absence of ridge-

based or hybrid features limited system robustness. 

Chhabra et al. (2023) advanced fingerprint segmentation and minutiae extraction by integrating deep 

convolutional neural networks, achieving an EER of approximately 2.8% and demonstrating strong 

robustness for latent fingerprints. However, the absence of ridge-based features limited the system’s ability 

to exploit global fingerprint structure. Imran and Sarosh Umar (2023) combined Gabor filtering with 

minutiae-based recognition and reported an accuracy of 96%, although false rejection rates increased to 

about 5% for low-quality fingerprint images. These findings reinforced the persistent limitations of 

minutiae-only systems under challenging acquisition conditions. 

Yadav et al. (2024) conducted an extensive review of hybrid fingerprint recognition approaches and 

reported that systems combining minutiae and ridge-flow features achieved EER values ranging from 2 to 

4%. While hybrid systems demonstrated improved accuracy and robustness, the authors noted ongoing 

scalability challenges for large fingerprint databases. Mulay et al. (2024) proposed a deep learning 

ensemble framework for minutiae extraction and achieved an EER of 2.3%. Despite its strong resilience to 

fingerprint distortions, the model remained computationally intensive and did not incorporate ridge-based 

features, indicating opportunities for further hybrid integration. 

Adedoyin et al. (2024) extended fingerprint recognition systems through IoT-based real-time attendance 

monitoring. Although the system achieved an accuracy of 95%, performance remained sensitive to noise 

due to reliance on minutiae-based extraction alone. The authors also reported performance degradation as 

the number of registered users increased. As cloud-enhanced biometric architectures gained prominence in 

the early 2020s, these studies collectively highlighted the trade-offs between accuracy, robustness, and 

scalability. A comparative summary of the reviewed works, including their strengths and limitations, is 

presented in Table 1.  

 

Table 1: Summary of strengths and weaknesses fingerprint-based recognition systems 
Author(s) Approach 

Proposed   

Dataset / 

Environment   

Strengths Limitations  

Akinduyite et al. 

(2013) 

Minutiae (CN 

method) 

Small academic 

dataset 

(students) 

Simple, accurate 

for clean images 

Low FAR (<2%) 

1. High FRR for 

noisy/partial prints;  

2. Poor scalability; 

3. No ridge features 

Aranuwa & 

Ogunniye (2012) 

Fingerprint 

verification 

(algorithm 

unspecified) 

E-payment 

environment in 

Nigeria 

Improved identity 

security 

Useful for 

authentication 

1. No detailed 

method;  

2. No FAR/FRR 

report.  

3. No ridge /minutiae 

distinction 
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Oyebola et al.   

(2018) 

Minutiae (CN 

method), Web 

University 

attendance 

system 

95% accuracy; 

improved admin 

tasks 

1. Matching time 

increases with DB 

size;  

2. High FRR for 

dry/smudged prints 

Ogundepo et al.  

(2019) 

Minutiae (CN 

method) 

Real-time 

student dataset 

EER 3%; real-

time operation 

1. High FRR (6%) for 

noisy images;  

2. No ridge features; 

limited scalability 

Oloruntoba & 

Akinode (2020) 

Minutiae (CN 

method), Web 

University 

students 

94% accuracy; 

reduces 

impersonation 

1. Dependent on 

minutiae only; 

2. Scalability 

challenges 

Batubara et al.  

(2021) 

Minutiae (CN 

method) 

Small cohort 96% accuracy; 

emphasizes 

preprocessing 

1. >3 sec matching 

time for 200 users; 

2. No ridge features 

Rahman et al. 

(2023) 

Minutiae, Cloud 

+ Mobile 

Cloud 

attendance app 

High 

accessibility; 

scalable cloud 

1. EER 4%; struggles 

with noisy images;  

2. No ridge features 

Adedoyin et al. 

(2024) 

Minutiae, IoT IoT-based 

attendance 

95% accuracy; 

real-time logging 

1. Poor robustness to 

noisy images;  

2. No ridge features          

Krish et al.   (2019)   Hybrid (Minutiae 

+ Ridge) 

Latent 

fingerprint 

dataset 

EER 2.5%; strong 

robustness 

1. High computation 

(>5 sec matching)   

Yang et al. (2019) Review of 

fingerprint 

methods 

Multiple 

datasets 

Detailed 

challenges; 

influential review 

1. No specific system;  

2. General analysis 

Görgel & Ekşi 

(2021) 

Gabor + CNN 

(Minutiae) 

Experimental 

dataset 

97% accuracy; 

strong 

enhancement 

1. Very high 

computational cost 

Chhabra et al. 

(2021) 

CNN 

segmentation + 

minutiae 

Latent 

fingerprints 

EER 2.8%; 

improved 

segmentation 

1. No ridge features; 

2. Heavy computation 

Imran & Sarosh 

Umar (2023) 

Minutiae + 

Gabor filtering 

Experimental 

dataset 

96% accuracy; 

enhanced 

preprocessing 

1. FRR up to 5% for 

noisy images;  

2. No ridge-based 

features 

| Mulay et al. 

(2024)   

Deep learning 

(ensemble) 

Multiple 

fingerprint 

datasets 

EER 2.3%; robust 

minutiae 

detection 

1. No ridge features; 

2. Computationally 

heavy 

 

4.0  Synthesis of Findings 

Beyond summarizing individual studies, a comparative synthesis reveals clear distinctions between 

classical, hybrid, and deep learning–based fingerprint recognition approaches when evaluated for real-

world attendance deployment. Classical minutiae-based systems remain attractive due to their simplicity, 

low computational cost, and ease of implementation, making them suitable for small-scale or resource-

constrained environments. However, as consistently reported in the literature (Akinduyite et al., 2013; 
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Oyebola et al., 2018), their sensitivity to image quality often results in higher false rejection rates in 

uncontrolled classroom settings. 

Hybrid approaches address many of these limitations by combining minutiae with ridge-based or texture-

based descriptors. Studies such as Krish et al. (2019) and Yadav et al. (2024) demonstrated that hybrid 

systems achieve lower equal error rates and improved robustness to partial or noisy fingerprints, which are 

common in real attendance scenarios. The trade-off, however, lies in increased computational complexity, 

which can affect scalability when databases grow large. 

Deep learning-based methods further improve robustness by learning discriminative representations 

directly from fingerprint images, showing strong performance under severe distortion or low-quality 

acquisition (Chhabra et al., 2023; Mulay et al., 2024). Despite their accuracy, these methods require 

substantial training data, high processing power, and specialized hardware, limiting their practicality for 

real-time attendance systems in many institutions. Overall, the literature suggests that hybrid fingerprint 

recognition currently offers the most balanced solution for real-world attendance deployment, providing 

improved accuracy and robustness while remaining more feasible than purely deep learning–based 

approaches. 

4.1 Challenges in Fingerprint Recognition 

Despite significant progress in fingerprint recognition research, several technical and practical challenges 

continue to limit system reliability, particularly in real-world attendance deployments. These challenges 

stem from variability in fingerprint quality, sensitivity of feature extraction techniques, computational 

constraints, security vulnerabilities, and cross-sensor inconsistencies. Fingerprint recognition is widely 

adopted due to its uniqueness, permanence, and relatively low acquisition cost. However, fingerprints 

captured under uncontrolled conditions frequently suffer from noise, smudging, uneven pressure, dry skin, 

perspiration, scars, and partial impressions. Yang et al. (2019) reported that low-quality fingerprints 

degrade ridge–valley clarity, thereby reducing the effectiveness of feature extraction. Reduced contrast and 

uneven illumination further increase false rejection rates. Although preprocessing techniques such as 

adaptive normalization and Gabor filtering improve ridge visibility, they cannot fully correct severe 

distortions in degraded samples. 

Minutiae-based methods remain dominant due to their high discriminative capability. However, they are 

highly sensitive to minor variations in ridge structure. Jain et al. (2024) observed that errors introduced 

during binarization, thinning, or ridge discontinuities may produce spurious or missing minutiae, which 

subsequently reduce matching reliability. Under poor acquisition conditions, this sensitivity contributes to 

increased false rejection rates (Akinduyite et al., 2013; Oyebola et al., 2018). Systems that rely solely on 

minutiae struggle with partial fingerprints, damaged ridges, or extreme finger placement angles. Physical 

deformation presents another significant challenge. Variations in finger pressure and placement angle 

introduce nonlinear distortions that stretch or compress ridge structures. Bazen and Gerez (2002) 

demonstrated that such deformation can misalign ridge orientation fields and disrupt block-based feature 

estimation. Compensating for nonlinear distortion remains technically complex and computationally 

demanding. 

Enhancement techniques such as Gabor filtering improve ridge visibility but may amplify noise when ridge 

frequency or orientation is inaccurately estimated. Görgel and Ekşi (2021) noted that improper parameter 

selection can introduce artifacts that blur ridge structures rather than clarify them. This issue is particularly 

pronounced in low-quality fingerprints with irregular ridge spacing. Hybrid systems that combine minutiae, 

ridge-based, and texture descriptors generally improve recognition performance. However, the integration 

of multiple feature types increases computational complexity. Krish et al. (2019) reported that hybrid 
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systems require substantial processing time for orientation estimation, filtering, feature extraction, and 

multi-stage matching. The resulting computational burden may limit scalability in large biometric 

databases and real-time verification environments. 

Security vulnerabilities also remain a concern. Fingerprint recognition systems are susceptible to 

presentation attacks using artificial replicas fabricated from materials such as silicone or gelatin. Without 

effective liveness detection mechanisms, even high-resolution sensors may fail to distinguish authentic 

fingerprints from spoofed samples. Milewski (2024) emphasized the growing importance of incorporating 

physiological or dynamic cues to strengthen system resilience. Finally, lack of standardization across 

sensors presents interoperability challenges. Differences in resolution, sensing technology, and output 

format complicate feature consistency across optical, capacitive, and ultrasonic devices. Jain et al. (2000) 

highlighted that cross-sensor variability can significantly degrade recognition accuracy when systems 

operate in multi-device environments. Collectively, these challenges highlight the persistent technical and 

operational limitations that continue to influence fingerprint recognition performance in real-world 

attendance systems. 

4.2 Future Research Directions 

Although fingerprint recognition technology has advanced considerably, several research priorities remain 

essential for improving reliability in real-world attendance systems. Future investigations should focus on 

bridging the persistent gap between laboratory performance metrics and operational deployment outcomes. 

Many existing models achieve high accuracy under controlled experimental conditions but demonstrate 

performance degradation when exposed to variable acquisition environments. Enhancing robustness to 

partial and low-quality fingerprints represents a critical direction for further study. In practical attendance 

settings, fingerprints are often captured quickly, under time constraints, and with varying levels of user 

cooperation. Research should therefore prioritize adaptive feature extraction models capable of maintaining 

stability when only limited ridge information is available. The development of more diverse and 

representative datasets will also support improved generalization. 

Improving cross-sensor interoperability is another important area. Algorithms that perform well on a 

specific sensor type may exhibit reduced accuracy when applied to fingerprints captured using different 

sensing technologies. Future research should emphasize domain adaptation strategies and sensor-invariant 

feature representations to ensure consistent recognition performance across heterogeneous devices. 

Security and privacy protection remain central to the evolution of biometric attendance systems. Further 

work is required to develop lightweight template protection schemes, secure biometric transformations, 

and efficient encryption mechanisms that preserve matching accuracy while preventing template 

compromise. Solutions must balance strong security guarantees with real-time processing requirements. 

Advances in machine learning continue to create opportunities for enhanced fingerprint recognition. 

Transformer-based architectures, improved convolutional neural networks, and hybrid learning 

frameworks may further strengthen representation learning under complex distortion conditions. 

Additionally, multi-modal biometric integration combining fingerprint data with complementary traits such 

as palmprints, vein patterns, or behavioral characteristics offers potential for improving resilience against 

spoofing and environmental variability. Finally, computational optimization remains essential for scalable 

deployment. Future systems must achieve high recognition accuracy while minimizing processing time and 

hardware requirements. Efficient model compression, algorithmic optimization, and resource-aware 

implementation strategies will be crucial for supporting large-scale attendance management systems in 

diverse institutional environments. 
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5.0. Conclusion 

This review critically examined recent advances in fingerprint biometric recognition for modern attendance 

management systems. The analyzed literature demonstrates substantial progress in preprocessing, feature 

extraction, and matching strategies, particularly through refinement of minutiae-based methods, 

incorporation of ridge-based descriptors, and integration of hybrid recognition frameworks. These 

developments have significantly improved recognition accuracy and robustness under varying acquisition 

conditions. 

Despite these advancements, persistent limitations remain. Image quality variability, nonlinear distortion, 

cross-sensor inconsistencies, computational constraints, and security vulnerabilities continue to influence 

system performance in real-world deployments. No single recognition strategy fully addresses all 

operational challenges. Minutiae-based approaches offer strong distinctiveness but remain sensitive to 

noise and deformation. Ridge-based methods enhance robustness but may lack fine discrimination. Hybrid 

techniques provide improved balance between accuracy and stability, though at increased computational 

cost. Deep learning models demonstrate promising resilience to distortion but require substantial data and 

processing resources, which may limit feasibility in large-scale or resource-constrained attendance 

systems. 

Overall, the reviewed evidence indicates that hybrid fingerprint recognition currently provides the most 

practical compromise between accuracy, robustness, and computational feasibility for attendance 

management applications. Continued research focused on cross-sensor generalization, secure template 

protection, computational optimization, and adaptive learning frameworks will be essential for developing 

scalable and deployment-ready biometric attendance systems capable of operating reliably across diverse 

institutional environments. 
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