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Abstract

The manual attendance system has been in use for decades; however, shortcomings such as impersonation,
ineffective manual record-keeping, and unreliable token-centric methodologies limit its application for this
digital age. Biometric-based fingerprint technique is one of the recently evolving approaches developed
to mitigate the shortcomings of manual attendance methods. It is on these premises that this current study
examines the principal methodologies employed in fingerprint recognition, focusing on attendance
management. Efforts were made to review the recent progress in preprocessing techniques such as
normalization, segmentation, orientation estimation, ridge frequency analysis, and Gabor filtering. Also,
feature extraction techniques like minutiae-based, ridge-based, and hybrid techniques were extensively
analyzed. Furthermore, matching algorithms, performance metrics, and error quantification for evaluating
the performance of biometric-based fingerprint systems were examined. The strengths, weaknesses, and
associated bottlenecks with the biometric-based fingerprint technique, particularly the management of low-
quality prints, scalability assurance, and robustness enhancement, were looked into. The outcome of this
review opens up gaps for new research directions in the development of more reliable and efficient
fingerprint-based attendance mechanisms.

Keywords: Attendance management, Fingerprint recognition, Gabor filtering, Minutiae features, Ridge-
based features

1. Introduction

Traditional methods such as passwords, pen-and-paper records, and identification cards are associated with
several shortcomings, including theft, misplacement, and proxy attendance (Hoo & Ibrahim, 2019). The
need to overcome these limitations has driven the development of modern attendance management systems,
particularly biometric fingerprint-based recognition systems, which remain among the most widely studied
biometric technologies (Akinduyite et al., 2013). Fingerprint recognition has been adopted across various
domains, including security, forensics, and identity management, due to its uniqueness, permanence, and
ease of use. Over the years, advancements in sensing hardware, image processing, pattern recognition, and
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machine learning have significantly improved fingerprint recognition systems, making them suitable for
large-scale deployment and real-time applications such as border access control, financial transaction
monitoring, healthcare systems, and institutional attendance tracking. In fingerprint recognition, the
extraction of distinctive characteristics from ridge patterns is a critical step in the identification process
(Jain et al., 2024).

Conventional fingerprint recognition techniques primarily rely on minutiae-based methods, which analyze
ridge endings and bifurcations that form unique fingerprint structures. Goyal and Jindal (2017) identified
minutiae as highly dependable fingerprint features, as they retain their uniqueness despite variations in
finger pressure, rotation, or partial impressions. However, minutiae-based systems are highly sensitive to
image quality and require extensive preprocessing to ensure accurate feature extraction. According to Yang
et al. (2019), factors such as noise, smudging, moisture, and low sensor resolution can obscure genuine
minutiae or introduce false points, thereby increasing error rates. To address these limitations, researchers
have explored ridge-based recognition approaches that capture global ridge flow, frequency, curvature, and
orientation patterns. While ridge-based methods provide improved robustness and stability, they are
generally less distinctive than minutiae-based approaches, particularly when distinguishing individuals
with similar global ridge patterns. Jain et al. (2000) introduced orientation maps and global texture
descriptors that enhance recognition performance under poor image quality and partial fingerprint
conditions.

More recent studies have shifted toward hybrid fingerprint recognition techniques that combine minutiae-
based and ridge-based features. Krish ez al. (2019) demonstrated that hybrid fusion significantly improves
recognition accuracy by integrating the precision of minutiae features with the noise tolerance of global
ridge descriptors. Additional improvements have also been achieved through advanced preprocessing
techniques such as Gabor filtering. Gorgel and Eksi (2021) reported that Gabor filtering effectively
enhances ridge—valley structures through frequency- and orientation-selective filtering, thereby improving
the reliability of subsequent feature extraction, especially for low-quality or uneven fingerprint
impressions. The increasing interest in biometric attendance systems has further driven research into
scalable, fast, and robust fingerprint recognition solutions for real-world deployment. Studies by
Akinduyite et al. (2013), Oyebola et al. (2018), and Oloruntoba and Akinode (2020) have shown that
fingerprint-based attendance systems reduce administrative errors and impersonation in educational
institutions. Nevertheless, challenges such as noisy images, large user databases, partial fingerprints, and
security threats including spoofing remain prevalent in many implementations (Yang et al., 2019; Mizinov
et al., 2024). These issues continue to motivate research into more robust, efficient, and secure fingerprint
recognition systems.

Given the rapid growth and diversity of fingerprint recognition research, a systematic review is necessary
to highlight recent developments, compare existing approaches, and identify persistent challenges and open
research directions. This review synthesizes current progress, applications, limitations, and future research
directions in fingerprint recognition systems. The remainder of this paper is organized as follows: Section
2 presents the conceptual background of fingerprint recognition, Section 3 reviews related works, Section
4 summarizes and analyzes the findings of the review, and Section 5 concludes the paper.

2.0  Conceptual Perspective of Fingerprint Recognition

Fingerprint recognition has evolved from traditional minutiae-based techniques to more advanced hybrid
and deep learning approaches. Feature extraction plays a central role in this evolution, as it directly
determines how effectively an individual can be identified. Three major categories of feature extraction
techniques are prominent in the literature: minutiae-based, ridge-based, and hybrid approaches. Minutiae-
based methods are widely used because of their high discriminative power, ridge-based methods offer
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improved robustness to noise and poor-quality images, while hybrid techniques integrate multiple feature
cues to enhance reliability (Goyal & Jindal, 2017). According to Jain ef al. (2024) and Yang et al. (2019),
these approaches differ in their emphasis on local ridge structures, global ridge patterns, texture
information, or learned representations. Reviewing these techniques highlights the progression of
fingerprint recognition and illustrates how different methods complement one another in practical, real-
world applications.

2.1 Fingerprint Biometric Authentication: An Overview

Biometric authentication refers to the automated process of verifying or identifying an individual based on
distinctive physiological or behavioral characteristics. Because biometric traits are inherently linked to the
individual, they provide strong resistance to impersonation. Abdulrahman and Alhayani (2023) reported
that biometric systems offer improved security compared to traditional password-based or token-based
methods, which may be forgotten, stolen, or intentionally shared. Common biometric modalities include
fingerprints, facial images, iris patterns, voiceprints, hand geometry, and behavioral traits such as gait or
typing rhythm. A typical biometric system consists of four main stages: sensing, preprocessing, feature
extraction, and matching. During the sensing stage, a scanner or sensor captures the biometric sample,
while preprocessing enhances sample quality by reducing noise and correcting distortions. Feature
extraction then identifies distinguishing characteristics, such as ridge flows or minutiae points, and the
matching stage establishes identity by comparing the extracted features with stored templates.

2.1.1 Minutiae-Based Fingerprint Recognition
Minutiae-based recognition remains the most widely adopted fingerprint recognition approach because it
relies on distinctive and stable local ridge characteristics, primarily ridge endings and bifurcations. These
features offer strong individual discrimination, as their spatial locations and orientations remain largely
consistent even when fingerprint images are captured under varying conditions (Goyal & Jindal, 2017). As
a result, minutiae-based methods form the foundation of most classical fingerprint recognition systems.
In typical implementations, minutiae extraction is performed after preprocessing steps such as binarization
and thinning, which enhance ridge clarity and reduce noise. The most commonly used extraction technique
is the Crossing Number (CN) method, which identifies minutiae by examining directional transitions in the
neighborhood of each ridge pixel in a thinned binary image. However, studies have shown that minutiae-
based systems are sensitive to noise, partial fingerprints, and low-quality images, which may introduce
spurious or missing minutiae and increase false rejection rates (Yang et al., 2019; Akinduyite et al., 2013).
For each ridge pixel P in the thinned binary fingerprint image, the Crossing Number (CN) is computed
using its eight-connected neighborhood as shown in Eqn (1). Let Py, P,, ..., Pg denote the eight neighboring
pixels surrounding P, ordered clockwise, and let Py = P; to complete the circular sequence. The Crossing
Number is defined as:

CN(P) =38, |P; = Piyy | where Py =P, Eqn (1)
where P; € {0,1} represents the binary pixel value at the i-th neighboring position. The CN value indicates
the type of ridge structure at pixel P: CN = 1 corresponds to aridge ending, CN = 3 indicates a bifurcation,
and CN = 2 represents a normal ridge continuation.
Each detected minutia is represented as a triplet (x> y» 8), where xand y denote the spatial coordinates of
the minutia in the fingerprint image, and 6 represents the local ridge orientation at that point, estimated
from the orientation field as depicted with Eqn (2). A complete minutiae template is defined as:

T = {(x1, 1, 601), (%2, ¥2,62), o, (X3, Y, O) } Eqn (2)
where n denotes the total number of extracted minutiae points in the fingerprint. As noted by Krish ef al.
(2019), minutiae templates are compact and highly discriminative, but they remain sensitive to noise,
partial fingerprints, and variations in finger placement.
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Minutiae matching involves comparing two aligned minutiae templates to determine whether
corresponding points represent the same fingerprint. Two minutiae are considered a match if they satisfy
both a spatial proximity constraint and an orientation similarity constraint.

Letm; = (x;,y;, 0;) and m; = (x;,y;, 8;) denote minutiae points from fingerprint templates A and
B, respectively as shown with Eqn (3). The spatial distance between two minutiae points is computed using
the Euclidean distance as:

sd(my,m;) = \/(xl — x]-)z + (y;: — yj)z Eqn (3)
where (x;y;) and (ij yj)represent the pixel coordinates of the two minutiae points. Two minutiae are
considered spatially consistent if this distance is below a predefined threshold (typically 8—12 pixels).
Orientation consistency between minutiae is evaluated using the minimum angular difference in Eqn (4):
od(m;,m;) = min(| 6; — 6; 1,360°—| 6, — 6; |) Eqn (4)
where 6;and 6; are the local ridge orientations of the two minutiae, measured in degrees. This formulation
accounts for angular wrap-around by constraining the difference to the range [0°2180°]. A match is
accepted if the orientation difference is below a specified threshold (commonly 1015 degrees).

After identifying all valid minutiae correspondences, a normalized matching score is given with Eqn (5):
2

— Nmatched
Score,,, = A;“a¢ Eqn (5)
A'Np

where Np.icheq denotes the number of matched minutiae pairs, and N4 and Np represent the total number
of minutiae points in templates Aand B, respectively. This normalization ensures that the score reflects the
degree of similarity between the two fingerprints independent of template size.

2.1.2 Ridge-Based Recognition

Ridge-based recognition focuses on capturing global fingerprint characteristics, including overall ridge
flow, ridge frequency, orientation, curvature, and texture. Unlike minutiae-based methods, which depend
on precise local details, ridge-based features remain relatively stable even when fingerprint images are
noisy or incomplete because they represent the global structural patterns of the fingerprint. Jain ez al. (2000)
demonstrated that ridge flow patterns provide strong complementarity to local minutiae and showed that
ridge-based techniques, such as FingerCode, are more robust to noisy or low-quality images. This
robustness makes ridge-based methods particularly useful in cases where only a limited number of minutiae
can be reliably detected. However, although ridge-based techniques help reduce false rejection rates, they
may lack the high level of uniqueness offered by minutiae-based methods, especially in large-scale
databases.

Ridge-based techniques typically operate by dividing the fingerprint image into blocks and computing
orientation or frequency maps that describe ridge flow patterns. Pradeep and Ravi (2022) noted that ridge-
based matching often relies on vector similarity measures, such as Euclidean distance, which generally
allow faster comparisons than minutiae-based approaches. As a result, ridge-based recognition is well
suited for large-scale attendance systems where computational speed and robustness are critical.
Orientation field estimation is commonly performed using gradient-based techniques, as proposed by
Bazen and Gerez (2002). Let d,(u, v) and d,,(u, v)denote the horizontal and vertical intensity gradients at
pixel location (w v) within a local block centered at (x’ y). Two coherence terms are computed as given
with Eqn (6) and Eqn (7) respectively:

VX(XJ Y) = Z(u,v) 2 aX (u' V) ' ay(u' V) qu’l (6)

Vy(%,Y) = uw [05(u,v) — 05 (u, v)] Eqn (7)
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where the summation is performed over all pixels within the local block. These coherence values capture
the dominant gradient structure of the ridge pattern based on Eqn (8). The local ridge orientation is then
estimated as:

0(x,y) = % . atanZ(V ,Vx) Eqn (8)

where 0(x, y) represents the ridge orientation at location (x> y). This formulation accounts for the
periodic nature of ridge orientation.

Once orientation and frequency information are obtained, each block contributes a set of numerical
descriptors, forming a ridge feature vector which can be evaluated with Eqn (9), thus:

T. = [f, 5, ..., f,] Eqn (9)

Let T,4 and T, denote ridge feature vectors extracted from two fingerprint images. Matching
compares two feature vectors Ryand Rp using Eqn (10) which is performed by computing the Euclidean
distance between the corresponding feature vectors and converting distance to similarity through Eqn (11);

T.a = [a1,a5, ...,a,], Trg = [by, by, ..., by] Eqgn (10)

D=, (a —b)? Eqn (11)

2.1.3 Texture-Based Recognition

Texture-based recognition extends fingerprint analysis beyond ridge orientation and minutiae by
examining fine-grained texture patterns, including local descriptors, spatial filters, and frequency-domain
techniques. The Gabor filter-based FingerCode model, first introduced by Jain et a/. (2000), extracts texture
features using a bank of filters tuned to specific orientations and frequencies. Texture-based systems are
capable of capturing subtle fingerprint details that may not be visible in ridge-orientation fields or minutiae
maps. Gorgel and Eksi (2021) reported that Gabor-based features are particularly effective for handling
partial or noisy fingerprints, as they enhance ridge—valley structures while capturing local texture
variations. In addition to Gabor-based methods, recent studies have explored other texture descriptors, such
as local binary patterns (LBP) and wavelet-based techniques, which provide compact and invariant
representations of fingerprint images. By complementing the limitations of minutiae-only approaches,
texture-based recognition contributes to improved robustness in fingerprint recognition systems.

2.1.4 Deep Learning-Based Recognition

Recent advances in convolutional neural networks (CNNs) have significantly transformed fingerprint
recognition by enabling automatic learning of multi-level representations directly from raw fingerprint
images, rather than relying on manually designed features. Studies by Gorgel and Eksi (2021) and Mulay
et al. (2024) demonstrated that CNN-based minutiae extractors outperform traditional techniques,
particularly when processing distorted or low-quality fingerprint images. In addition, Chhabra et al. (2023)
showed that CNN-based segmentation and enhancement models can substantially improve the clarity of
latent and low-contrast fingerprints. Deep learning approaches are capable of generating highly
discriminative embeddings for matching, performing reliable classification, and detecting fine-grained
fingerprint details with improved precision. However, their adoption in low-resource environments or real-
time attendance systems is often constrained by the high computational demands and large training datasets
required. Despite these challenges, deep learning has become a central focus of contemporary fingerprint
research and has inspired the development of hybrid learning-based recognition frameworks.

2.1.5 Hybrid Techniques

Hybrid recognition techniques combine multiple fingerprint feature types to exploit the strengths of each
approach. These systems integrate minutiae, ridge-based descriptors, and texture features to produce
fingerprint templates that are both accurate and stable. Krish et al. (2019) demonstrated that hybrid systems
achieve lower equal error rates (EERs) than single-technique approaches, particularly when handling
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partial fingerprints or noisy images. By fusing global and local features, hybrid methods preserve high

discriminative power while improving robustness under varying acquisition conditions.

Hybrid fingerprint recognition systems commonly employ score-level fusion strategies to combine

matching results obtained from multiple feature extractors. This integration compensates for the limitations

of individual techniques by leveraging complementary information from local, global, and texture-based

descriptors. A representative hybrid template may take the form as described with Eqn (12);
H={M,R,T} Eqn (12)

where M denotes the set of extracted minutiae features, Rrepresents the ridge-based feature vector, and T

corresponds to the Gabor-based texture feature vector. Each feature component produces an independent

similarity score, namely Spinutiacs Sridge> a0d Sgapor, TESPeCtively.

The overall hybrid similarity score is computed using a weighted sum fusion rule as shown in Eqn (13):
Shybrid = Wlsminutiae + WZSridge + W3Sgabor Eqn (13)

where wy, w,, and w; are weighting coefficients that control the contribution of each feature type. The

weights are constrained such that the weighted sum must be equal to one represented in Eqn (14):

wq + Wy + W3 = 1 Eqn (14)

ensuring proper normalization of the combined similarity score. Studies such as Krish et al. (2019), Yadav
et al. (2024), and Mulay et al. (2024) reported that hybrid fusion strategies reduce both false acceptance
and false rejection rates, improve robustness to partial or distorted fingerprints, and enhance stability in
large-scale deployments.

2.2. Fingerprint Image Preprocessing Techniques

Preprocessing is a critical stage in fingerprint recognition because it provides the foundation for accurate
feature extraction, matching, and classification. Raw fingerprint images often suffer from low contrast,
uneven finger pressure, smudging, moisture, noise, and partial impressions. Effective preprocessing
significantly improves the reliability of both minutiae-based and ridge-based recognition by enhancing
image quality before feature extraction. According to Yang et al. (2019), inadequate preprocessing is a
major contributor to high error rates, including increased false rejection rates (FRR) and distorted or
missing feature points. Over time, several preprocessing techniques have been developed and refined to
improve ridge—valley clarity, suppress noise, and prepare fingerprint images for reliable analysis.
Commonly used methods include normalization, orientation estimation, ridge-frequency estimation, Gabor
filtering, binarization, and thinning. These stages are typically applied sequentially as part of a
preprocessing pipeline, and many studies combine them to address shortcomings identified in earlier
fingerprint recognition systems.

2.2.1 Normalization

Normalization is one of the earliest and most important preprocessing stages in fingerprint recognition, as
it reduces variations in gray-level intensity caused by uneven finger pressure, sensor limitations, or
environmental conditions. A widely adopted normalization approach was introduced by Hong et al. (1998),
which standardizes image intensities by adjusting each pixel relative to a target mean and variance. By
constraining the pixel intensity distribution, normalization enhances consistency across fingerprint samples
while preserving subtle ridge information. Chhabra et al. (2023) noted that normalization is particularly
effective for faint or low-contrast fingerprints, as it improves ridge visibility prior to filtering or
enhancement. Consequently, most modern fingerprint recognition systems incorporate normalization to
stabilize subsequent operations such as orientation and ridge-frequency estimation.

Mathematically, let I (x, y)denote the original grayscale intensity at pixel location (x’ y), Mand Vrepresent
the mean and variance of the image, and Myand V,,denote the desired mean and variance. The normalized
pixel intensity as depicted with Eqn (15):
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where the transformation maps pixel values above and below the mean symmetrically, ensuring that the
resulting image has the specified statistical properties while preserving ridge contrast.

N(x,y) = Eqn (15)

2.2.2 Orientation Estimation

Orientation estimation determines the direction of ridge flow across a fingerprint image, as described by
Bazen and Gerez (2002), and plays a central role in enhancement, feature extraction, and classification.
Most classical approaches compute local image gradients along horizontal and vertical directions and use
these values to estimate the dominant ridge orientation within predefined image blocks. Jain et al. (2000)
noted that accurate orientation estimation improves local ridge coherence, enabling filters such as Gabor
kernels to be properly aligned with ridge directions. Because noise and partial impressions can disrupt ridge
continuity in low-quality fingerprints, reliable orientation fields are particularly important under such
conditions. Gorgel and Eksi (2021) emphasized that refined orientation maps significantly enhance
minutiae extraction, as local ridge direction directly influences the interpretation of ridge endings and
bifurcations. For a block of size W X W, two coherence terms are computed using Eqn (16) to Eqn (18),
thus:

Ve, y) = X 2 0x(w, v) 0y (v, v) Eqn (16)
V(% Y) = Zup CHODELCD) Eqn (17)
0(x,y) = yatan2 (%, (6, Ve(x,7)) Eqn (18)

here d,(u,v) and 0, (u, v) denote the intensity gradients along the horizontal and vertical directions at
pixel (w v) within the block, Wis the block size, and 6(x, y) represents the estimated ridge orientation at
location (x’ y).

2.2.3 Ridge-Frequency Estimation

Ridge frequency estimation determines how frequently ridges occur within a fingerprint image and helps
identify anomalous regions such as smudges, scars, or excessively smooth areas. The process typically
involves projecting pixel intensities along the ridge direction and detecting peaks corresponding to ridge-
valley transitions. Ridge frequency estimation is important because it guides the tuning of Gabor filters and
other enhancement kernels. Jain et al. (2000) demonstrated within the FingerCode framework that accurate
frequency estimation allows filter parameters to be matched to the natural spacing of ridges, resulting in
improved enhancement quality. Studies by Chhabra ef al. (2023) and Yang et al. (2019) further noted that
inaccurate frequency estimation may cause over-smoothing or distortion of ridge patterns, negatively
affecting matching accuracy. The ridge-frequency estimation can be obtained with Eqn (19):

1

Eqn (19)

Frequency =
q Y Average Ridge Distance

where D denotes the average ridge-to-ridge distance measured along the ridge direction.

2.2.4 Gabor Filtering

Gabor filtering remains one of the most influential and widely adopted techniques for fingerprint image
enhancement. A Gabor filter captures local orientation and frequency characteristics by combining a
sinusoidal carrier with a Gaussian envelope. Gorgel and Eksi (2021) reported that Gabor filters are
particularly effective for low-quality or latent fingerprints because they enhance ridge structures while
suppressing noise. Since Gabor filters are directionally selective, accurate orientation and ridge-frequency
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estimates are required for effective filtering. When applied correctly, Gabor filtering increases ridge—valley
contrast, reduces smudging effects, and restores clarity in regions affected by uneven finger pressure. Many
modern fingerprint recognition systems apply a bank of Gabor filters at multiple orientations to enhance
ridge structures in all directions. A two-dimensional Gabor filter is expressed as depicted in Eqn (20):

2 2
G(x,y; f,0) = exp {— % (z—g + z—g)} cos(2mfxg) Eqn (20)
Where; xg = xcos6@ + ysin, yg = —xsin6 + ycos, oy, g, = control the spread of the Gaussian envelope,

f = ridge frequency with the coordinate transformation: (x’, y')= rotated coordinates. 6 represents the
local ridge orientation and f is the local ridge frequency. Chhabra et al. (2023) showed that Gabor filtering
significantly improves segmentation and feature extraction accuracy, particularly for partial or latent
fingerprints.

2.2.5 Binarization
Binarization converts the enhanced grayscale fingerprint image into a binary representation, where ridges
appear as black pixels and valleys as white pixels. This transformation simplifies the image and improves
both the speed and accuracy of subsequent feature extraction. According to Jain et al. (2024), adaptive
thresholding techniques apply different threshold values across local regions based on ridge contrast and
illumination conditions, generally outperforming global thresholding in noisy or unevenly illuminated
fingerprints. Milewski (2024) emphasized that effective binarization improves ridge path clarity, which is
essential for the accurate detection of ridge endings and bifurcations. However, inadequate binarization
may amplify noise or introduce false ridge breaks, increasing the likelihood of spurious minutiae. The
thresholding operation is shown in Eqn (21):
B(x,y) = {1 ifE(x,y) >T(x,y)

Egn (21
0 otherwise an (21)

where E (x, y)represents the enhanced pixel intensity and T (x, y)denotes the locally adaptive threshold.

2.2.6 Thinning (Skeletonization)

Thinning reduces fingerprint ridge lines to a one-pixel-wide skeleton while preserving their overall
connectivity. This step is essential for minutiae extraction, as it ensures that ridge endings and bifurcations
are accurately represented at their true locations. Goyal and Jindal (2017) noted that effective thinning
minimizes the generation of false minutiae caused by spurious branches or excessively thick ridges. Most
thinning approaches employ iterative algorithms that remove outer ridge pixels while maintaining ridge
continuity. Milewski (2024) described several cycle-based thinning techniques that are widely used in
biometric systems due to their computational efficiency and stability. When thinning is performed
correctly, minutiae detection algorithms such as the Crossing Number (CN) method can produce reliable
and consistent feature sets.

2.2.7 Modern and Deep Learning—Based Preprocessing

Recent scholarly studies have proposed and implemented deep learning—based methods for fingerprint
preprocessing tasks such as segmentation, orientation estimation, and image enhancement. Chhabra ef al.
(2023) developed a convolutional neural network (CNN) model capable of correcting distorted ridge
patterns and enhancing the clarity of latent fingerprints. Similarly, Mulay et al. (2024) investigated
learning-based minutiae extraction pipelines that integrate preprocessing into end-to-end neural network
architectures. Although these approaches typically outperform conventional techniques when processing
degraded or low-quality fingerprints, they require substantial computational resources and large annotated
datasets. As a result, their deployment in real-time or resource-constrained environments remains limited.
Nevertheless, deep learning—based preprocessing methods represent an important direction for future
research in fingerprint recognition.
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Preprocessing continues to play a critical role in fingerprint recognition research by improving robustness
under real-world conditions, reducing error rates, and enhancing overall accuracy. Earlier systems,
particularly those relying solely on minutiae-based recognition, depended heavily on normalization,
binarization, and thinning, but often struggled with noisy or partially captured fingerprints (Akinduyite et
al.,2013; Oyebola et al., 2018). More recent studies have increasingly adopted Gabor filtering, frequency-
guided enhancement, and deep learning techniques to improve orientation estimation and image quality
(Krish et al., 2019; Gorgel & Eksi, 2021). Despite these advances, challenges such as deep skin damage,
poor sensor quality, and severe image degradation remain difficult to resolve, even with advanced
preprocessing techniques (Chhabra et al., 2023; Mulay et al., 2024). Consequently, hybrid feature strategies
and learning-based approaches continue to be actively explored.

2.3 Performance Evaluation Metrics in Fingerprint Recognition Systems

Performance evaluation metrics are essential for assessing the effectiveness, reliability, and practical
readiness of fingerprint recognition systems. These metrics determine how well a system distinguishes
between genuine users and impostors and evaluate its suitability for real-world applications such as
authentication, identification, and attendance management. Common evaluation criteria include statistical
error rates, matching accuracy, computational efficiency, and overall system robustness. Frequently used
metrics include false acceptance rate, false rejection rate, true acceptance rate, true rejection rate, and equal
error rate (Mingote et al., 2019). In addition, measures such as matching time, ranking accuracy, and
receiver operating characteristic (ROC) curves are often considered. This subsection reviews widely used
performance metrics to provide a clear reference for researchers in fingerprint recognition.

2.3.1 False Acceptance Rate (FAR)

The false acceptance rate represents how often a fingerprint recognition system incorrectly accepts an
impostor as a genuine user. In biometric evaluation, FAR measures the probability that a non-matching
fingerprint pair is incorrectly classified as a match. A false acceptance occurs when the similarity score
between two fingerprints exceeds the system’s decision threshold despite originating from different
individuals. Jain ef al. (2024) emphasized that minimizing FAR is particularly important in high-security
applications, although stricter thresholds may increase false rejection rates. Krish ez al. (2019) reported that
hybrid feature fusion methods generally achieve lower FAR due to improved discriminative capability. A
high FAR indicates vulnerability to security breaches. FAR is expressed using Eqn (22):

FAR = Number of False Acceptances Equ (22)

Total Number of Impostor Attempts

2.3.2 False Rejection Rate (FRR)

The false rejection rate measures how often a system incorrectly rejects a genuine user and reflects its
sensitivity to intra-class variations such as partial fingerprints, dry or moist skin, pressure differences, and
environmental noise. A false rejection occurs when the similarity score between two genuine fingerprint
samples falls below the decision threshold. Yang er al. (2019) observed that systems relying solely on
minutiae-based features often exhibit higher FRR when processing low-quality images due to missing or
spurious minutiae. Ridge-based and Gabor-based features can help reduce FRR by providing greater
tolerance to image distortion. Akinduyite et al. (2013) emphasized that FRR, alongside FAR, remains a
fundamental metric for evaluating fingerprint recognition performance. Batubara et al. (2021) focused
primarily on FRR to assess system sensitivity to legitimate users. FRR is usually expressed with Eqn (23):

Number of False Rejections
FRR = = Eqn (23)
Total Number of Genuine Attempts
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2.3.4 Equal Error Rate (EER)
Equal error rate is a standard benchmark used to evaluate and compare biometric systems. EER represents
the operating point at which the false acceptance rate and false rejection rate are equal. A lower EER
indicates better overall system performance, as it reflects fewer errors of both types. This metric is widely
used because it provides a single, concise measure of system accuracy. Comparative studies, including
Krish et al. (2019) and Gorgel and Eksi (2021), frequently report EER, particularly for hybrid fingerprint
systems that must balance sensitivity and specificity. Graphically, EER is obtained at the intersection of
the FAR and FRR curves as the decision threshold varies as described with Eqn (24) by Ogundepo et al.
(2019):

EER = FAR(t) = FRR(7) Eqn (24)
Where; tis the threshold value.

2.3.5 Accuracy

Accuracy is one of the most commonly reported evaluation metrics in fingerprint recognition research
because it indicates how often the system makes correct decisions overall. It measures the proportion of
true outcomes, including correctly accepted genuine users and correctly rejected impostors, relative to all
verification attempts. In biometric evaluation, accuracy is computed as the sum of true positives and true
negatives divided by the total number of outcomes, including false matches and false non-matches.
Although accuracy provides a general view of system performance, it does not always capture behavior
under imbalanced data or strict security requirements. For this reason, accuracy is often interpreted
alongside metrics such as FAR or EER. Gorgel and Eksi (2021) defined accuracy as the proportion of

correct decisions made by the system and is computed using Eqn (25):

TP+TN
—_— Eqn (25)
TP+TN+FP+FN

Where TP is true positives, TN is true negatives, FP is false positives, and FN is false negatives. Rahman
et al. (2023) similarly reported both accuracy and EER as key performance metrics in modern fingerprint
recognition studies.

Accuracy =

2.4. Other Metrics of Evaluation

Several additional evaluation metrics appear in the fingerprint recognition literature but are less frequently
reported in experimental studies. Nevertheless, they remain valuable for assessing the performance of
biometric fingerprint systems. These metrics include genuine acceptance rate (GAR), false match rate
(FMR), false non-match rate (FNMR), receiver operating characteristic (ROC) curves, matching time,
throughput, and template size. Genuine acceptance rate represents the proportion of legitimate users who
are correctly verified by the system. False match rate and false non-match rate are alternative terminologies
commonly adopted in ISO biometric standards and correspond closely to FAR and FRR, respectively.
These measures are widely used in industry-grade fingerprint recognition systems.

Receiver operating characteristic (ROC) curves provide a graphical representation of the relationship
between GAR and FAR across varying decision thresholds and are commonly used to visualize the trade-
off between security and usability. Matching time measures the speed of the fingerprint matching process
and is particularly important for large-scale one-to-many (1:N) systems, such as attendance management
platforms, immigration control, or national identity databases. Throughput refers to the number of
fingerprint verification operations a system can process per second and is critical for real-time applications.
Template size indicates the amount of memory required to store fingerprint features, with smaller templates
generally improving storage efficiency and computational performance. Although these additional metrics
do not appear explicitly in all the reviewed studies, they are widely discussed in biometric system
evaluations and help position the reviewed work within the broader fingerprint recognition research
landscape.
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3.0 Related Works

Fingerprint-based recognition systems have been extensively studied across application domains including
biometric authentication, access control, financial security, and attendance management. A survey of
literature published between 2012 and 2024 reveals notable advancements in preprocessing techniques,
feature extraction strategies, and system architectures. However, challenges related to scalability,
robustness, and security remain persistent. For example, Aranuwa and Ogunniye (2012) developed a
fingerprint-based authentication system for secure electronic payment applications in Nigeria. While the
system demonstrated improved security in user verification, limited details were provided regarding feature
extraction algorithms or performance metrics such as FAR and FRR. Although the study established the
relevance of fingerprint biometrics for secure identity management, it did not explore hybrid recognition
approaches or advanced preprocessing techniques.

Akinduyite et al. (2013) proposed a fingerprint-based attendance management system that employed the
Crossing Number (CN) method for minutiae extraction, alongside normalization, binarization, and thinning
as preprocessing stages. Performance evaluation reported a false acceptance rate below 2% for small
datasets; however, false rejection rates of up to 5% were observed for low-quality fingerprint images.
Matching time increased with database size, highlighting early concerns regarding system scalability.
While the study demonstrated the feasibility of minutiae-based recognition for attendance systems, it also
revealed limitations that subsequent research sought to address through improved robustness and
efficiency.

Subsequent studies focused on more scalable and digitally integrated architectures. Oyebola et al. (2018)
developed a web-based fingerprint attendance system using standard minutiae extraction and template
matching techniques. The system achieved an accuracy of 95% under controlled conditions, but matching
times increased to approximately 4—5 seconds for a database of 500 users, indicating scalability constraints.
The authors also reported increased false rejection rates when fingerprints were dry, smudged, or partially
captured.

Ogundepo ef al. (2019) implemented a real-time fingerprint authentication system for managing student
records, incorporating normalization and thinning during preprocessing and employing minutiae-based
identification. The system reported an equal error rate of approximately 3%; however, higher false rejection
rates were observed when processing noisy fingerprint images. This study highlighted the difficulty of
maintaining reliability under real-world imaging conditions without advanced enhancement techniques.

In order to address the limitations of single-feature approaches, hybrid recognition techniques were
introduced. Krish ef al. (2019) presented a hybrid fingerprint recognition system that combined minutiae
and extended ridge features using a weighted fusion strategy. The system achieved an EER of about 2.5%,
outperforming minutiae-only and ridge-only methods. However, this improvement came at the cost of
increased computational complexity, with matching times exceeding 5 seconds for large datasets. The
authors strengthened preprocessing through Gabor filtering, which improved robustness against noise and
partial fingerprints.

Yang et al. (2019) provided a comprehensive review of fingerprint recognition challenges and emphasized
the importance of hybrid feature integration for improved system reliability. Their analysis showed that
minutiae-only systems typically exhibited EER values between 3 and 5%, while hybrid approaches
achieved better accuracy at the expense of higher computational demands. Oloruntoba and Akinode (2020)
proposed a web-based fingerprint attendance system that relied on minutiae features and relational database
storage. Although the system achieved an accuracy of 94% for small university cohorts and reduced
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impersonation, it remained vulnerable to poor-quality fingerprint images and suffered from scalability
limitations.

Gorgel and Eksi (2021) combined Gabor filtering with CNN-based minutiae recognition and achieved an
accuracy of 97%. Despite its high accuracy, the system required substantial processing time due to the
computational cost of convolutional layers, limiting its suitability for large-scale or real-time deployments.
Rahman et al. (2023) developed a cloud-backed fingerprint attendance platform integrated with a mobile
application. The system employed conventional preprocessing and minutiae matching techniques and
achieved an accuracy of 93%. However, performance degraded when fingerprint quality was poor,
resulting in an EER of approximately 4%. While cloud storage improved scalability, the absence of ridge-
based or hybrid features limited system robustness.

Chhabra et al. (2023) advanced fingerprint segmentation and minutiae extraction by integrating deep
convolutional neural networks, achieving an EER of approximately 2.8% and demonstrating strong
robustness for latent fingerprints. However, the absence of ridge-based features limited the system’s ability
to exploit global fingerprint structure. Imran and Sarosh Umar (2023) combined Gabor filtering with
minutiae-based recognition and reported an accuracy of 96%, although false rejection rates increased to
about 5% for low-quality fingerprint images. These findings reinforced the persistent limitations of
minutiae-only systems under challenging acquisition conditions.

Yadav ef al. (2024) conducted an extensive review of hybrid fingerprint recognition approaches and
reported that systems combining minutiae and ridge-flow features achieved EER values ranging from 2 to
4%. While hybrid systems demonstrated improved accuracy and robustness, the authors noted ongoing
scalability challenges for large fingerprint databases. Mulay et al. (2024) proposed a deep learning
ensemble framework for minutiae extraction and achieved an EER of 2.3%. Despite its strong resilience to
fingerprint distortions, the model remained computationally intensive and did not incorporate ridge-based
features, indicating opportunities for further hybrid integration.

Adedoyin et al. (2024) extended fingerprint recognition systems through IoT-based real-time attendance
monitoring. Although the system achieved an accuracy of 95%, performance remained sensitive to noise
due to reliance on minutiae-based extraction alone. The authors also reported performance degradation as
the number of registered users increased. As cloud-enhanced biometric architectures gained prominence in
the early 2020s, these studies collectively highlighted the trade-offs between accuracy, robustness, and
scalability. A comparative summary of the reviewed works, including their strengths and limitations, is
presented in Table 1.

Table 1: Summary of strengths and weaknesses fingerprint-based recognition systems

Author(s) Approach Dataset / | Strengths Limitations
Proposed Environment
Akinduyite et al. | Minutiae ~ (CN | Small academic | Simple, accurate | 1. High FRR for
(2013) method) dataset for clean images noisy/partial prints;
(students) Low FAR (<2%) | 2. Poor scalability;
3. No ridge features
Aranuwa & | Fingerprint E-payment Improved identity | 1. No detailed
Ogunniye (2012) verification environment in | security method;
(algorithm Nigeria Useful for | 2. No FAR/FRR
unspecified) authentication report.
3. No ridge /minutiae
distinction
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Oyebola et al. | Minutiae  (CN | University 95%  accuracy; | 1. Matching time
(2018) method), Web attendance improved admin increases with DB
system tasks size;
2. High FRR for
dry/smudged prints
Ogundepo et al. | Minutiae  (CN | Real-time EER 3%; real- | 1. High FRR (6%) for
(2019) method) student dataset | time operation noisy images;
2. No ridge features;
limited scalability
Oloruntoba & | Minutiae  (CN | University 94%  accuracy; | 1. Dependent on
Akinode (2020) method), Web students reduces minutiae only;
impersonation 2. Scalability
challenges
Batubara et al. | Minutiae  (CN | Small cohort 96%  accuracy; | 1. >3 sec matching
(2021) method) emphasizes time for 200 users;
preprocessing 2. No ridge features
Rahman et al | Minutiae, Cloud | Cloud High 1. EER 4%; struggles
(2023) + Mobile attendance app | accessibility; with noisy images;
scalable cloud 2. No ridge features
Adedoyin et al. | Minutiae, loT IoT-based 95%  accuracy; | 1. Poor robustness to
(2024) attendance real-time logging noisy images;
2. No ridge features
Krish et al. (2019) | Hybrid (Minutiae | Latent EER 2.5%; strong | 1. High computation
+ Ridge) fingerprint robustness (>5 sec matching)
dataset
Yang et al. (2019) | Review of | Multiple Detailed 1. No specific system;
fingerprint datasets challenges; 2. General analysis
methods influential review
Gorgel & Eksi | Gabor + CNN | Experimental 97%  accuracy; | 1. Very high
(2021) (Minutiae) dataset strong computational cost
enhancement
Chhabra et al | CNN Latent EER 2.8%; | 1. No ridge features;
(2021) segmentation  + | fingerprints improved 2. Heavy computation
minutiae segmentation
Imran & Sarosh | Minutiae + | Experimental 96%  accuracy; | 1. FRR up to 5% for
Umar (2023) Gabor filtering dataset enhanced noisy images;
preprocessing 2. No ridge-based
features
| Mulay et al | Deep learning | Multiple EER 2.3%; robust | 1. No ridge features;
(2024) (ensemble) fingerprint minutiae 2. Computationally
datasets detection heavy
4.0  Synthesis of Findings

Beyond summarizing individual studies, a comparative synthesis reveals clear distinctions between
classical, hybrid, and deep learning—based fingerprint recognition approaches when evaluated for real-
world attendance deployment. Classical minutiae-based systems remain attractive due to their simplicity,
low computational cost, and ease of implementation, making them suitable for small-scale or resource-
constrained environments. However, as consistently reported in the literature (Akinduyite et al., 2013;
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Oyebola et al., 2018), their sensitivity to image quality often results in higher false rejection rates in
uncontrolled classroom settings.

Hybrid approaches address many of these limitations by combining minutiae with ridge-based or texture-
based descriptors. Studies such as Krish ef al. (2019) and Yadav et al. (2024) demonstrated that hybrid
systems achieve lower equal error rates and improved robustness to partial or noisy fingerprints, which are
common in real attendance scenarios. The trade-off, however, lies in increased computational complexity,
which can affect scalability when databases grow large.

Deep learning-based methods further improve robustness by learning discriminative representations
directly from fingerprint images, showing strong performance under severe distortion or low-quality
acquisition (Chhabra et al., 2023; Mulay et al., 2024). Despite their accuracy, these methods require
substantial training data, high processing power, and specialized hardware, limiting their practicality for
real-time attendance systems in many institutions. Overall, the literature suggests that hybrid fingerprint
recognition currently offers the most balanced solution for real-world attendance deployment, providing
improved accuracy and robustness while remaining more feasible than purely deep learning—based
approaches.

4.1 Challenges in Fingerprint Recognition

Despite significant progress in fingerprint recognition research, several technical and practical challenges
continue to limit system reliability, particularly in real-world attendance deployments. These challenges
stem from variability in fingerprint quality, sensitivity of feature extraction techniques, computational
constraints, security vulnerabilities, and cross-sensor inconsistencies. Fingerprint recognition is widely
adopted due to its uniqueness, permanence, and relatively low acquisition cost. However, fingerprints
captured under uncontrolled conditions frequently suffer from noise, smudging, uneven pressure, dry skin,
perspiration, scars, and partial impressions. Yang et al. (2019) reported that low-quality fingerprints
degrade ridge—valley clarity, thereby reducing the effectiveness of feature extraction. Reduced contrast and
uneven illumination further increase false rejection rates. Although preprocessing techniques such as
adaptive normalization and Gabor filtering improve ridge visibility, they cannot fully correct severe
distortions in degraded samples.

Minutiae-based methods remain dominant due to their high discriminative capability. However, they are
highly sensitive to minor variations in ridge structure. Jain et al. (2024) observed that errors introduced
during binarization, thinning, or ridge discontinuities may produce spurious or missing minutiae, which
subsequently reduce matching reliability. Under poor acquisition conditions, this sensitivity contributes to
increased false rejection rates (Akinduyite et al., 2013; Oyebola et al., 2018). Systems that rely solely on
minutiae struggle with partial fingerprints, damaged ridges, or extreme finger placement angles. Physical
deformation presents another significant challenge. Variations in finger pressure and placement angle
introduce nonlinear distortions that stretch or compress ridge structures. Bazen and Gerez (2002)
demonstrated that such deformation can misalign ridge orientation fields and disrupt block-based feature
estimation. Compensating for nonlinear distortion remains technically complex and computationally
demanding.

Enhancement techniques such as Gabor filtering improve ridge visibility but may amplify noise when ridge
frequency or orientation is inaccurately estimated. Gorgel and Eksi (2021) noted that improper parameter
selection can introduce artifacts that blur ridge structures rather than clarify them. This issue is particularly
pronounced in low-quality fingerprints with irregular ridge spacing. Hybrid systems that combine minutiae,
ridge-based, and texture descriptors generally improve recognition performance. However, the integration
of multiple feature types increases computational complexity. Krish et al. (2019) reported that hybrid
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systems require substantial processing time for orientation estimation, filtering, feature extraction, and
multi-stage matching. The resulting computational burden may limit scalability in large biometric
databases and real-time verification environments.

Security vulnerabilities also remain a concern. Fingerprint recognition systems are susceptible to
presentation attacks using artificial replicas fabricated from materials such as silicone or gelatin. Without
effective liveness detection mechanisms, even high-resolution sensors may fail to distinguish authentic
fingerprints from spoofed samples. Milewski (2024) emphasized the growing importance of incorporating
physiological or dynamic cues to strengthen system resilience. Finally, lack of standardization across
sensors presents interoperability challenges. Differences in resolution, sensing technology, and output
format complicate feature consistency across optical, capacitive, and ultrasonic devices. Jain et al. (2000)
highlighted that cross-sensor variability can significantly degrade recognition accuracy when systems
operate in multi-device environments. Collectively, these challenges highlight the persistent technical and
operational limitations that continue to influence fingerprint recognition performance in real-world
attendance systems.

4.2 Future Research Directions

Although fingerprint recognition technology has advanced considerably, several research priorities remain
essential for improving reliability in real-world attendance systems. Future investigations should focus on
bridging the persistent gap between laboratory performance metrics and operational deployment outcomes.
Many existing models achieve high accuracy under controlled experimental conditions but demonstrate
performance degradation when exposed to variable acquisition environments. Enhancing robustness to
partial and low-quality fingerprints represents a critical direction for further study. In practical attendance
settings, fingerprints are often captured quickly, under time constraints, and with varying levels of user
cooperation. Research should therefore prioritize adaptive feature extraction models capable of maintaining
stability when only limited ridge information is available. The development of more diverse and
representative datasets will also support improved generalization.

Improving cross-sensor interoperability is another important area. Algorithms that perform well on a
specific sensor type may exhibit reduced accuracy when applied to fingerprints captured using different
sensing technologies. Future research should emphasize domain adaptation strategies and sensor-invariant
feature representations to ensure consistent recognition performance across heterogeneous devices.
Security and privacy protection remain central to the evolution of biometric attendance systems. Further
work is required to develop lightweight template protection schemes, secure biometric transformations,
and efficient encryption mechanisms that preserve matching accuracy while preventing template
compromise. Solutions must balance strong security guarantees with real-time processing requirements.

Advances in machine learning continue to create opportunities for enhanced fingerprint recognition.
Transformer-based architectures, improved convolutional neural networks, and hybrid learning
frameworks may further strengthen representation learning under complex distortion conditions.
Additionally, multi-modal biometric integration combining fingerprint data with complementary traits such
as palmprints, vein patterns, or behavioral characteristics offers potential for improving resilience against
spoofing and environmental variability. Finally, computational optimization remains essential for scalable
deployment. Future systems must achieve high recognition accuracy while minimizing processing time and
hardware requirements. Efficient model compression, algorithmic optimization, and resource-aware
implementation strategies will be crucial for supporting large-scale attendance management systems in
diverse institutional environments.
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5.0. Conclusion

This review critically examined recent advances in fingerprint biometric recognition for modern attendance
management systems. The analyzed literature demonstrates substantial progress in preprocessing, feature
extraction, and matching strategies, particularly through refinement of minutiae-based methods,
incorporation of ridge-based descriptors, and integration of hybrid recognition frameworks. These
developments have significantly improved recognition accuracy and robustness under varying acquisition
conditions.

Despite these advancements, persistent limitations remain. Image quality variability, nonlinear distortion,
cross-sensor inconsistencies, computational constraints, and security vulnerabilities continue to influence
system performance in real-world deployments. No single recognition strategy fully addresses all
operational challenges. Minutiae-based approaches offer strong distinctiveness but remain sensitive to
noise and deformation. Ridge-based methods enhance robustness but may lack fine discrimination. Hybrid
techniques provide improved balance between accuracy and stability, though at increased computational
cost. Deep learning models demonstrate promising resilience to distortion but require substantial data and
processing resources, which may limit feasibility in large-scale or resource-constrained attendance
systems.

Overall, the reviewed evidence indicates that hybrid fingerprint recognition currently provides the most
practical compromise between accuracy, robustness, and computational feasibility for attendance
management applications. Continued research focused on cross-sensor generalization, secure template
protection, computational optimization, and adaptive learning frameworks will be essential for developing
scalable and deployment-ready biometric attendance systems capable of operating reliably across diverse
institutional environments.
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