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ABSTRACT 

The effects of shear deformation and rotary inertia on the dynamics of an anisotropic plate resting on a bi-

parametric Vlasov foundation and traversed by a distributed moving force is investigated in this work. 

The Mindlin plate model is used as the basis for the mathematical model of an anisotropic plate having a 

varying flexural rigidity and varying density. Galerkin’s weighted residual method is employed to reduce the 

fourth order governing partial differential equation into a set of coupled fourth order ordinary differential 

equation which is solved using the Laplace transform method. The method required expressing the Heaviside 

function that represent the distributed moving load on the structure as a Fourier sine series. 

 A closed form solution is obtained for the problem of anisotropic plate on a Vlasov foundation subjected to a 

moving distributed force. Results obtained with the aid of MATLAB programming indicate that shear modulus 

and rotary inertia correction factor all have significant influence on the anisotropic plate. It was observed that 

increasing the shear modulus and rotary inertia of the plate reduced the amplitude of displacement of the plate. 

Shear deformation and rotary inertia should not be neglected in models and solutions involving the dynamics 

of anisotropic plates traversed by moving distributed forces as this could lead to serious defects in bridges, 

roads, decking and machine parts. 

KEYWORDS: Shear deformation; Rotary Inertia; Anisotropic Plate; Distributed force; Simple Support   

1. Introduction 

Plates are widely used structures with wide 

engineering applications in aircraft, nuclear vessels, 

hydraulics, bridges, and roads. There has been a great 

deal of research on the analysis of structures (shells, 

plates, and beams) with consideration for various 

factors such as displacements, thickness variation, 

stresses, curvature, the effect of surrounding media, 

loads and masses by authors including (Oni and 

Jimoh, 2016; Aiyesimi, 2000; Esen, 2015; Hull, 2016; 

Jia-Xing, et al. 2017; Jimoh, et al. 2017; Jimoh and 

Awelewa, 2017; Ozgan, 2018; Awodola, et al. 2019). 
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The influence of various parameters on structures 

(plates, beams, and shells) has been studied by many 

authors. Some of the earliest works on the influence 

of structural parameters on the plate was by (Mindlin, 

1951) which was on the influence of rotary inertia and 

shear on flexural motions of isotropic elastic plates. 

The influence of shear deformation and rotary inertia 

on the natural frequencies of a thick rotating annular 

plate was discussed by (Cote, Atalla, & Nicolas 

1997). The effect of shear deformation and rotary 

inertia on the natural frequencies of axially loaded 

beams was studied by (Koo, 2014). (Omolofe and 

Ogunbamike, 2014) studied the influence of 

prestressed foundation subgrade, rotatory inertia 

correction factor, the mass ratio on the flexural 

motions, and critical velocity. Transverse shear 

deformations, rotary inertia, and initial curvature 

effects on anisotropic plates and shells were 

examined by (Toorani and Lakis, 2000). The 

influence of shear modulus, foundation modulus, and 

mass ratio on elastically supported rectangular plates 

under concentrated moving masses and resting on the 

bi-parametric elastic foundation was examined by 

(Awodola and Omolofe, 2018) while (Niyi et al., 

2019) considered the effects of shear deformation and 

rotary inertia on the dynamics of anisotropic plates 

traversed by moving concentrated load. 

Furthermore, the problem of assessing the dynamic 

behavior of structures carrying moving loads has been 

almost exclusively reserved in literature to the case in 

which the moving loads are simplified as moving 

concentrated forces. It is assumed that these 

concentrated loads act at a point on the structure and 

along a single line in space as they move. That is, the 

moving load is modeled as a lumped load. However, 

in practice, it is well known that loads are actually 

distributed over a small segment or over the entire 

length of the structural member they traverse. When 

the moving load is distributed, the problem of 

investigating the load-structure interaction becomes 

much more complicated. Concentrated forces are 

mere mathematical idealization, and cannot be found 

in the real world, where forces are either body forces 

acting within the bulk of the material or within the 

volume. 

Therefore, there is a need to study more realistic case 

where the moving load will be modeled as distributed 

one. The aim of the present work was to investigate 

the dynamic response of a square anisotropic plate 

with varying flexural rigidity and varying mass per 

unit area is considered.  The anisotropic plate is 

simple supported on a bi-parametric Vlasov 

foundation and is traversed by a distributed moving 

mass. The influence of rotary inertia, flexural rigidity, 

areal density, and foundation shear deformation on 

the plate is examined. The design of improved plates 

with better qualities that are lighter and more cost-

effective is very important hence the use of 

anisotropic material and composites with high 

strength to weight ratio to reduce hazards due to 

moving masses. 

 

2 Governing Equation 

The equation governing the anisotropic plate 

traversed by a varying moving mass on a bi-

parametric elastic Vlasov foundation is given as; 

 (𝐷𝑑(𝜉, 𝜂)𝛻
2 − (

𝜇𝑑(𝜉,𝜂)𝐷𝑑(𝜉,𝜂)

ℎ𝐺𝑑
+

𝑅0)
𝜕2

𝜕𝜄2
)𝛻2𝑈(𝜉, 𝜂, 𝜄) +

𝜇𝑑(𝜉,𝜂)𝑅0

ℎ𝐺𝑑

𝜕4𝑈(𝜉,𝜂,𝜄)

𝜕𝜄4
+ 

𝜇(𝜉, 𝜂)
𝜕2𝑈(𝜉,𝜂,𝜄)

𝜕𝜄2
+ (𝑘𝑓 − 𝐺𝑓𝛻

2)𝑈(𝜉, 𝜂, 𝜄) =

𝑃𝐿(𝜉, 𝜂, 𝜄) (1 −
1

𝑔

𝑑2

𝑑𝜄2
𝑈(𝜉, 𝜂, 𝜄))           

 

(1) 

2.1 Anisotropy of the plate 

Two mechanical properties of the plate are varying 

in different directions on the rectangular plate. The 

flexural rigidity of the plate 𝐷𝑑 and the mass per 

unit area of the plate 𝜇𝑑 are given by; 

𝐷𝑑(𝜉, 𝜂) = 𝐷𝑜 (1 −
2𝜉

𝑎
+
2𝜉2

𝑎2
) (1 −

2𝜂

𝑏
+
2𝜂2

𝑏2
) 

      (2) 

𝜇𝑑(𝜉, 𝜂) = 𝜇𝑜 (1 −
2𝜉

𝑎
+
2𝜉2

𝑎2
) (1 −

2𝜂

𝑏
+
2𝜂2

𝑏2
) 

      (3) 

Where 𝑈(𝜉, 𝜂, 𝜄)is the displacement of the plate 

𝜉and 𝜂 are spatial coordinates, 𝜄is the time 

coordinate, 𝐷𝑑 is the variable flexural rigidity of the 

plate, 𝜇𝑑 is the variable mass per unit area of the 

plate and 𝐷0 is the constant flexural rigidity of the 



AJOSR Vol. 3, Issue 2. 2021                                  Niyi et al. (2021) 
 

61 
 

plate, 𝜇0 is the constant mass per unit area of the 

plate. 𝑅0 is the rotary inertia correction factor, 𝐺𝑑 is 

the shear modulus, M is the mass of the load and 

𝑣𝜉 and v𝜂are the velocity components of the load, k 

and G depict the foundation stiffness and shear 

modulus parameter of the elastic Vlasov foundation 

and the load is PL and  
𝑑2

𝑑𝜄2
 is the convective 

acceleration. 

2.2 Dimensionless form 

The following dimensionless variables are 

introduced; 

𝑥 =
𝜉

𝑎
, 𝑦 =

𝜂

𝑏
, 𝑡 =

𝜄

𝑡0
    

      (4) 

Where 𝑡0will be specified and  

Also, the load and convective acceleration are given 

as (6) and (7) respectively; 

𝑃𝐿(𝑥, 𝑦, 𝑡) = 𝑀𝑔𝐻(𝑥 − 𝑣𝑥𝑡)𝐻(𝑦 − 𝑦0) 
      (5) 

𝑑2

𝑑𝑡2
=

𝜕2

𝜕𝑡2
+ (2𝑉

𝜕

𝜕𝑡
+ 𝑎) (

𝜕

𝜕𝑥
+

𝜕

𝜕𝑦
) + 𝑉2𝛻2 

      (6) 

Where 𝐻(𝑥 − 𝑣𝑥𝑡)𝐻(𝑦 − 𝑦0) is Heaviside function 

Substituting (4), (5) and (6) into equation (1) and 

making some rearrangements yields, 

 

 {𝐷1𝐹𝑥𝐹𝑦 (
𝜕4

𝜕𝑥4
+ 2

𝜕4

𝜕𝑥2𝜕𝑦2
+

𝜕4

𝜕𝑦4
) + 𝐷2𝐹𝑥𝑦 (

𝜕3

𝜕𝑥3
+

𝜕3

𝜕𝑥𝜕𝑦2
) + 𝐷2𝐹𝑦𝑥 (

𝜕3

𝜕𝑥2𝜕𝑦
+

𝜕3

𝜕𝑦3
) + 𝐷12(𝐹𝑥 + 𝐹𝑦) 

(
𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
) − 𝑏1𝐹𝑎 (

𝜕4

𝜕𝑥2𝜕𝑡2
+

𝜕4

𝜕𝑦2𝜕𝑡2
)

−
𝑅0
𝑡2
(

𝜕4

𝜕𝑥2𝜕𝑡2
+

𝜕4

𝜕𝑦2𝜕𝑡2
) 

+𝑏2
𝜇𝑜
𝜌ℎ
𝐹𝑥 𝐹𝑦

𝜕4

𝜕𝑡4
+ 𝑏3

𝜇𝑜
𝜌ℎ
𝐹𝑥𝐹𝑦

𝜕2

𝜕𝑡2
}𝑈(𝑥, 𝑦, 𝑡) 

+{𝑘𝑓 − 𝐺𝑓 (
𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
)}𝑈(𝑥, 𝑦, 𝑡) 

= 𝑃0𝐻(𝑥 − 𝑣𝑥𝑡)𝐻(𝑦 − 𝑦𝑜) 

−
𝑃0
𝑔
𝐻(𝑥 − 𝑣𝑥𝑡)𝐻(𝑦 − 𝑦𝑜) [𝑏3

𝜕2

𝜕𝑡2
+ (

2𝑉0
𝑡0

𝜕

𝜕𝑡
+ 𝑎0) 

(
𝜕

𝜕𝑥
+

𝜕

𝜕𝑦
) + 𝑉0

2 (
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
)] 𝑈(𝑥, 𝑦, 𝑡)

  (7)
 

where; 

𝐷1 =
𝐷0

𝐸ℎ3
, 𝐷2 =

4𝐷0

𝐸ℎ4
,  𝐷3 =

𝐷2
ℎ
, 

 𝑏1 =
𝜇0𝐷0

𝐸𝐷𝜌ℎ2𝐺𝑡0
2
; 𝑏2 =

𝑅0ℎ
6

𝐷𝐺𝑡0
4 , 𝑏3 =

ℎ
2

𝑡0
2 , 

𝑏3 =
1

𝑡0
2 , 𝑘𝑓 =

𝜅𝐷

ℎ
2 ;  𝐺𝑓 =

𝐷𝐺0

ℎ
3 , 𝜇(𝑥, 𝑦) 

=
𝜇0
𝜌ℎ
𝐹𝑥𝐹𝑦, 𝐹𝑥𝑦 = (2𝑥 − 1)(1 − 2𝑦 + 2𝑦

2), 

 𝐹𝑥𝑦 = (2𝑦 − 1)(1 − 2𝑥 + 2𝑥
2) 

𝐹𝑥 = (1 − 2𝑥 + 2𝑥2), 𝐹𝑦 = (1 − 2𝑦 + 2𝑦
2), 

𝐹𝑎 = (1 − 2𝑥 + 2𝑥2)2(1 − 2𝑦 + 2𝑦2)2         (8) 

The fourth order partial differential equation in 

equation (7) is the dynamic plate problem of an 

anisotropic plate with variable flexural rigidity and 

variable mass per unit area acted upon by a moving 

distributed load which is to be investigated. 

The anisotropic plate is subject to simply supported 

boundary conditions on all edges;

 

                                        for 0 ≤ 𝑥 ≤ 1
𝑈(0, 𝑦, 𝑡) = 0 = 𝑈(1, 𝑦, 𝑡); 𝑈𝑥𝑥(0, 𝑦, 𝑡) = 0 = 𝑈𝑥𝑥(1, 𝑦, 𝑡)

and 
for 0 ≤ 𝑦 ≤ 1

𝑈(𝑥, 0, 𝑡) = 0 = 𝑈(𝑥, 1, 𝑡); 𝑈𝑦𝑦(𝑥, 0, 𝑡) = 0 = 𝑈𝑦𝑦(𝑥, 1, 𝑡)}
 
 

 
 

  

          (9) 

With initial boundary conditions defined as follows; 

𝑈(𝑥, 𝑦, 𝑡)|𝑡=0 = 0;    𝑈𝑡(𝑥, 𝑦, 𝑡)|𝑡=0 = 0;   

𝑈𝑡𝑡(𝑥, 𝑦, 𝑡)|𝑡=0 = 0;    𝑈𝑡𝑡𝑡(𝑥, 𝑦, 𝑡)|𝑡=0 = 0 

         (10) 

2.3 Method of Solution 

The Galerkin’s weighted residual method is used to 

reduce the fourth order partial differential equation 
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(7) into a set of coupled fourth order ordinary 

differential equation. The Heaviside function is 

expressed as a Fourier sine series and the 

transformed ordinary differential equation is 

simplified using the modified Struble’s asymptotic 

technique for the moving mass problems and then 

solved using the Laplace transform method. The 

displacement written in the form; 

𝑈(𝑥, 𝑦, 𝑡) = ∑ 𝛬𝑚(𝑥, 𝑦)𝑦𝑚(𝑡)
∞
𝑚=1   (11) 

Where𝛬𝑚(𝑥, 𝑦) are the known eigen-functions of 

the plate with the same boundary conditions, 

obtained by considering the free vibration of 

rectangular plates given by; 

𝛻4𝛬𝑚 −
𝜇

𝐷
𝛺𝑚
2 𝛬𝑚 = 0         (12) 

 

𝛺𝑚, 𝑚 = 1, 2, 3, … are the natural frequencies of the 

dynamic system and 𝑦𝑚(𝑡) are amplitude functions 

which have to be solved. 𝛬𝑛(𝑥, 𝑦)are assumed to be 

products of the function 𝜙𝑛𝑖(𝑥) and 𝜙𝑛𝑗(𝑦)which 

are plate functions in the direction of 𝑥 and 𝑦axes 

respectively. Hence, 

𝛬𝑛(𝑥, 𝑦) = 𝜙𝑛𝑖(𝑥) ⋅ 𝜙𝑛𝑗(𝑦)            (13) 

Where, 

𝜙𝑛𝑖(𝑥) = 𝑠𝑖𝑛 𝜓𝑛𝑖 𝑥 + 𝐴𝑛𝑖 𝑐𝑜𝑠 𝜓𝑛𝑖 𝑥 +
𝐵𝑛𝑖 𝑠𝑖𝑛ℎ𝜓𝑛𝑖 𝑥 + 𝐶𝑛𝑖 𝑐𝑜𝑠ℎ𝜓𝑛𝑖 𝑥      (14) 

𝜙𝑛𝑗(𝑦) = 𝑠𝑖𝑛 𝜓𝑛𝑗 𝑦 + 𝐴𝑛𝑗 𝑐𝑜𝑠 𝜓𝑛𝑗 𝑦 +

𝐵𝑛𝑗 𝑠𝑖𝑛ℎ𝜓𝑛𝑗 𝑦 + 𝐶𝑛𝑗 𝑐𝑜𝑠ℎ𝜓𝑛𝑗 𝑦    

   

Where 𝐴𝑛𝑖 , 𝐴𝑛𝑗 , B𝑛𝑖, 𝐵𝑛𝑗, C𝑛𝑖, C𝑛𝑗are constants 

determined by the boundary conditions,𝜓𝑛𝑖  and 
𝜓𝑛𝑗are called modal frequencies. Since the plate 

under consideration has simple support at all its 

edges, the boundary conditions (9) is taken as 

       0 0;  0;  0 0;  0;ni ni nj nja b      

      (15) 

       2 22 2

2 2 2 2

00
0;  0;  0;  0

nj njni ni
ba

x x y y

     
   

   

      (16) 

to obtain plate functions; 

 sin ,   sin  ni i nj jn x n y       (17) 

With the constants 0ni ni niA B C   and modal 

frequencies; =ni in  and =nj jn   
 

The Heaviside function is represented using the 

Fourier Sine series 

The Heaviside function is represented using the 

Fourier Sine series 

 
   

0

sin 2 11 1

4 2 1

x

x

n

n x v t
H x v t

n









 
  


  

      (18) 

Applying the Galerkin’s weighted residual method 

to (7) and rearranging yields; 

 
 

   
   

 

4 2

2 * * * * *2 2 * *2

1 0 0 0 1 0 0 11 2 0 124 2

cos

m m m

m

n ni x

d y t d y t dy t
c y t

dt dt dt

P R t

    



         

 

      (19) 
Where 

   

* * 0 0 132
0 31 32 4 41 42 0

0 01 02 0 01 02

*
* 01
1 3 102 1 1

0 0

;  ;  ;  

cos 2 1 sin 2 11 1

4 2 1 2 1

a q q q q n

q q i q q

x x

a b

n n

P I
R I I A I I P

A I I A n I I

n v t n v tI
b I F F

n n






 

 

 

 

    

  
    

  
 

   

   *2 10
11 112 2 2

0 0

cos 2 1 sin 2 11 1

4 2 1 2 1

x x

a b

n n

n v t n v tQ
I F F

n n

 

 

 

 

  
    

  
   

   31*2 2 2

12 0 11 122 3 3

0 0

cos 2 1 sin 2 11 1

4 2 1 2 1

q x x

o a b

n n

I n v t n v t
a V I F F

n n

 

 

 

 

  
       

   
 

        (20)  

 

Equation (19) is the fundamental equation of the 

problem of the dynamics of anisotropic plate on 

Vlasov foundation having simple supports on all 

edges. The simple-simple anisotropic plate on 

Vlasov foundation traversed by a moving 

distributed force is considered. An approximate 

model of the moving force system is obtained when 

the inertia effect of the moving mass is neglected 
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(
*

0 0  ). Thus, (19) becomes; 

 
 

 
   

4 2

2 * 2

1 0 0 24 2
cos

m m

m n ni x

d y t d y t
y t P R t

dt dt
       

      (21) 

   
   

4 2

2 2

24 2
cos

m m

sf m n ni x

d y t d y t
y t P R t

dt dt
     

      (22) 

Where, 

2 2 *

1 0 0sf   
    (23)

 

Next (22) is subjected to Laplace transforms using 

initial boundary condition defined in (10); 

   
   

4 2

2 2

24 2
cos

p p

sf p n ni x

d y t d y t
L L L y t P L R t

dt dt
  

   
         

      

    (24) 

   4 2 2 2

2 2 2

ni
p sf n

x

R s
L y s s s P

s s
 



 
         

      (25) 

By using quadratic formula,  

  4 2 2 2 2 2 2 2

2 1 2sf f fs s s w s w       

      (26) 

Where 

2 2 4 2

1 2

2 2 4 2

2 2

1
4

2

1
4

2

f sf sf

f sf sf

w

w

  

  

      

   

 

   

      (27) 

Also 

      2 22 2 2 2 2 2 2 2
1 21 2 1 2

1 1 1 1

f ff f f f
w ws w s w s w s w

 
  
    
 

      (28) 

Therefore, in view of (27) and (28), (25) becomes, 

  2 2 2 2 2 2 2 2

1 2 1 2

1 1n ni
p

f f x f f

P R s
y s

w w s s s w s w

   
             

      (29) 

An inversion of equation (29) using the convolution 

theorem as follows; 

     

   

2 12 2

1 2 2 10 0

2 1

2 10 0

sin sin

1 1
sin cos sin cos

t t

n ni ni
p f f

f f f f

t t

f x f x

f f

P R R
y t w t u du w t u du

w w w w

w t u udu w t u udu
w w

 


   

 


    



 

 

      (30) 

This yield; 

   

  
     

2 2 2 2

2 1 1 2 1 22 2 2 2

1 2 1 2

2 2 2 2

1 2 2 12 2 2 2

1 2

cos cos

1
      cos cos cos cos

n ni
p f f f f f f

f f f f

f x x f f x x f

f x f x

P R
y t w w t w w t w w

w w w w

w t w t w t w t
w w

   
 

 
    

   

          

      

      

      (31) 

Substituting (31) into equation (11) gives; 

   

  
     

2 2 2 2

2 1 1 2 1 22 2 2 2
1 1 1 2 1 2

2 2 2 2

1 2 2 12 2 2 2

1 2

, , cos cos

1
      cos cos cos cos

       sin sin

i j

n n
n ni

f f f f f f

m m f f f f

f x x f f x x f

f x f x

i j

P R
U x y t w w t w w t w w

w w w w

w t w t w t w t
w w

m x m y

   
 

 

 

 
    

   

          





 

        (32) 

Equation (32) is now the transverse displacement 

for simply supported boundary conditions for the 

moving force problem of the dynamics of 

anisotropic plate on Vlasov foundation traversed by 

a moving distributed force. 

 

3. Results and Discussions 

3.1 Results 
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A square plate resting on a bi-parametric Vlasov 

foundation of length and breadth 1m and Young’s 

modulus 𝐸 = 1.9 × 1010 𝑃𝑎 and poisson ratio (v) 

of 0.3 was used for the investigation. A load of mass 

𝑀 = 120𝑔 is assumed to travel at a velocity of 

0.98𝑚/𝑠.  

 

1. Effect of Shear Deformation 

 

 

Figure 1: Transverse displacement 2D profile of simply supported anisotropic plate for various values of shear deformation 𝐺𝑐 

 

 

     Figure 2a: 3D diagram for the effect 𝐺𝑐1 = 4 × 10
4        Figure 2b: 3D diagram for the effect 𝐺𝑐1 = 8 × 10

5 
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Figure 2c: 3D diagram for the effect 𝐺𝑐1 = 1.2 × 10
7         Figure 2d: 3D diagram for the effect 𝐺𝑐1 = 4 × 107 

 

2. Effect of Rotatory Inertia 

 

Figure 3: Transverse displacement 2D profile of simply supported anisotropic plate for various values of rotatory inertia 𝑅𝑜 
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Figure 4a: 3D diagram for the effect 𝑅𝑜 = 0.02         Figure 4b: 3D diagram for the effect 𝑅𝑜 = 0.028 

 

 

Figure 4c: 3D diagram for the effect 𝑅𝑜 = 0.04         Figure 4d: 3D diagram for the effect 𝑅𝑜 = 0.08 

 

 

3.2 Discussions 

Figure 1 displays the transverse displacement 

response of a simply supported anisotropic plate 

under the action of distributed forces for various 

values of shear deformation 𝐺𝑐. The figure shows 

that as 𝐺𝑐 increases the deflection of the plate 

decreases. Surface plots Figures 2a to Figure 2d 

indicates a reduction in peaks as the values of the 𝐺𝑐 
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factor increases from 4 × 104 to 4 × 107. The 

effect of rotary inertia R0 on the transverse 

displacement of a simply supported anisotropic 

plate under the action of distributed force various 

values of rotary inertia R0 is display in figure 3. It 

is clearly show that the response amplitude of the 

plate decreases as the values of rotary inertia R0 

increases. The peaks of the surface plots reduces 

from Figures 4a to 4d which indicates that higher 

values of the rotary inertia reduces the range of the 

displacement of the anisotropic plate. 

 

 

4. Conclusions 

The effects of shear deformation and rotary inertia 

on the dynamics of an anisotropic plate resting on a 

Vlasov foundation and traversed by a moving 

distributed force was considered in this study. A 

solution to the problem for moving force is obtained 

using Laplace transform method in conjunction 

with convolution theory. Increasing the shear 

modulus of the anisotropic plate resulted in a 

reduction in the transverse displacement of the plate 

just as the displacement of the plate reduces for 

higher values of the rotary inertia correction factor. 

Thus, none of these structural parameters should be 

neglected in the problems involving the dynamics 

of anisotropic plates of moving distributed force. 

These structural parameters must be given the right 

of place and importance in the planning, 

construction and execution of engineering 

structures in order to avoid unexpected failure of the 

structures. 
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